pytorch textcnn 转onnx
时间: 2023-08-30 08:01:13 浏览: 150
将PyTorch中的TextCNN模型转为ONNX格式的步骤如下:
首先,确保你已经安装了PyTorch和ONNX两个库。然后,导入所需的库:
```python
import torch
import torch.onnx as onnx
import torchvision.models as models
```
接下来,初始化你的TextCNN模型并加载预训练的权重:
```python
from textcnn import TextCNN
# 初始化TextCNN模型
model = TextCNN()
# 加载预训练的权重
model.load_state_dict(torch.load('textcnn_model.pth'))
```
然后,将输入和输出的示例数据加载到模型中,并进行前向传播:
```python
# 示例输入数据
example_input = torch.randn(1, num_channels, input_size)
# 使用模型进行前向传播
example_output = model(example_input)
```
现在,将模型转化为ONNX格式,并保存到本地文件:
```python
# 设置模型为评估模式
model.eval()
# 将模型转为ONNX格式
onnx_model = onnx.export(model, example_input, 'textcnn_model.onnx', opset_version=10)
```
最后,在本地目录中生成了一个名为'textcnn_model.onnx'的ONNX模型文件。你可以使用该文件来在其他平台上加载和运行该模型。
这就是将PyTorch中的TextCNN模型转为ONNX格式的基本步骤。根据你的实际情况,可能需要根据模型的不同进行适当的调整和修改。
阅读全文