首页
合成热力图的(Cellular Automata Model,CAM)是哪篇论文提出来的,论文题目是什么
合成热力图的(Cellular Automata Model,CAM)是哪篇论文提出来的,论文题目是什么
时间: 2023-05-28 21:03:12
浏览: 140
合成热力图的Cellular Automata Model(CAM)最初是由Frisch、Hasslacher和Pomeau在1986年的论文《Lattice-gas automata for the Navier-Stokes equation》中提出的。
阅读全文
相关推荐
MATLAB编程实现Cellular Automata元胞向量机
资源摘要信息:"基于matlab编程实现的Cellular Automata元胞向量机" 在计算机科学和数学领域中,Cellular Automata(元胞自动机)是一种离散模型,它由一维或多维的格子构成,每个格子中放置着一定状态的元胞,并...
atomato:探索多种Cellular Automata实现的编程项目
资源摘要信息:"Atomato:用于娱乐目的的不同Cellular Automata实现的集合" 1. Cellular Automata(细胞自动机)基础 细胞自动机是一种离散模型,由一系列排列在规则网格中的细胞组成。每个细胞拥有有限数量的状态,...
Dart实现Cellular Automata库:编程与可视化探索
资源摘要信息:"cellular_automata库游乐场是Dart编程语言的一个实践项目,专注于实现和展示元胞自动机(Cellular Automata, CA)。这个项目允许开发者以一种简单直观的方式编写和测试CA规则,并提供了一个易于使用的...
Cellular automata Model: an Adaptive Approach to Determining the Flow of Tollbooths
Cellular automata Model: an Adaptive Approach to Determining the Flow of Tollbooths,刘权兴,,Toll plaza is designed for collecting tolls in heavily travelled highways; it is however unpopular since...
A cellular automata model for simulating grain structures with straight and hyperbolic interfaces (2012年)
A description of a mathematical algorithm for simulating grain structures with straight and hyperbolic interfaces is shown. The presence of straight and hyperbolic interfaces in many grain structures ...
Automata:使用Cellular Automata创建图像和动画
在IT领域,细胞自动机(Cellular Automata)是一种基于规则的复杂系统,它由一组简单的规则控制着一维、二维或更高维度的离散单元格状态的变化。这些规则通常是局部的,即每个单元格的状态更新只依赖于其自身及周围...
Cellular Automata-开源
元胞自动机(Cellular Automata)是一种模拟复杂系统行为的数学模型,它由一系列规则简单的单元格构成,每个单元格都有有限的状态,并且根据其自身状态和相邻单元格的状态进行演化。在“Cellular Automata-开源”...
Cellular_Automata_code_18.rar_automata_cellular automata co_cell
整理网上matlab环境元胞自动机18个源程序,全部调试通过。对广大matlab用户研究了解元胞机有重要参考价值。
Elementary-Cellular-Automata:Elementary Cellular Automata 初等元胞自动机JS模拟
初等元胞自动机(Elementary Cellular Automata,ECA)是一种简单的计算模型,由一个一维网格构成,每个网格位置称为“元胞”,并有有限的状态集合。元胞的状态根据其邻居的状态按照预设的规则进行更新。ECA的研究在...
An optimization model for evacuation based on cellular automata and ant colony algorithm
2. 元胞自动机(Cellular Automata,简称CA):元胞自动机是一种离散数学模型,由一个规则的元胞格子组成,每个元胞根据预定的局部规则在离散的时间步骤中演化。元胞自动机广泛应用于模拟复杂系统,如交通流量、疾病...
cellular_automata:在Dart中实现的Cellular Automata库游乐场
元胞自动机 用Dart编写的蜂窝自动机图书馆/游乐场。 愉快地接受请求请求! ^ _ ^ 网络演示: : 作者:吉米·弗雷斯特·费洛斯( ) GitHub: : Dart主程序包: : Web渲染器程序包: : Travis CI: : ...
A Survey on Cellular Automata
细胞自动机(Cellular Automata,简称CA)自冯·诺依曼和乌拉姆首次提出以来,因其简单而强大的结构吸引了来自不同领域的研究者关注。从最早的理论构建到斯蒂芬·沃尔弗拉姆在《一种新科学》中的系统论述,细胞...
Cellular Automata Renderer-开源
细胞自动机渲染器(Cellular Automata Renderer)是一款开源软件,专门用于呈现细胞自动机的动态行为。细胞自动机是一种规则简单的计算模型,由一维、二维或更高维度的离散网格构成,每个网格单元根据预设的局部规则...
cellular automata approach.pdf
大学生数学建模资料,书籍,模型,论文,常用算法模型+课件讲义代码
2d cellular automata in 3d
Interactive 2D Cellular Automata in 3D is an interactive, 3-dimensional introduction to cellular automata (CA). Currently, the program allows the user to evolve a 100-cell CA grid step-by-step, ...
CA.zip_cellular automata_cellular matlab
细胞自动机(Cellular Automata,简称CA)是一种在离散空间和时间上运行的简单规则系统,由一维、二维或更高维度的格点组成,每个格点都有有限的状态。MATLAB作为一种强大的数值计算和可视化工具,是实现细胞自动机...
Java Cellular Automata System-开源
蜂窝自动机(Cellular Automata)是一种计算模型,由一维、二维或更高维度的离散网格组成,每个网格单元(细胞)根据一组简单的规则与相邻单元交互并更新其状态。这种模型在理论计算机科学、生物学、物理学、化学、...
SVGA Cellular Automata Program-开源
在本开源项目中,SVGALib被用来创建一个名为“SVGA Cellular Automata Program”的细胞自动机程序。细胞自动机是一种简单的计算模型,由一维或二维的网格组成,每个网格位置称为“细胞”,具有有限的状态集。这些...
Cellular Automata in Matlab.doc
### Cellular Automata in MATLAB #### 引言 Cellular Automata(细胞自动机,简称 CA)是一种基于局部规则和局部通信进行计算的方案。在典型的细胞自动机模型中,一个网格上的每个点代表一个具有有限状态集的单元...
JCASIM Cellular Automata Simulation-开源
程序系统JCASim是一个通用系统,用于在Java中模拟元胞自动机。 它包括一个独立的应用程序和一个用于Web演示的applet。
CSDN会员
开通CSDN年卡参与万元壕礼抽奖
海量
VIP免费资源
千本
正版电子书
商城
会员专享价
千门
课程&专栏
全年可省5,000元
立即开通
全年可省5,000元
立即开通
最新推荐
CSAE 53-2020 合作式智能运输系统 车用通信系统应用层及应用数据交互标准(第一阶段)(1)
通过C-V2X(Cellular-V2X),这项标准利用了LTE蜂窝网络技术,扩展了车辆感知的范围,使汽车能够获取到超出自身传感器能力的环境信息,这对于提升自动驾驶的安全性和可靠性至关重要。同时,C-V2X还能协助优化交通...
面向C-V2X的多接入边缘计算服务能力开放和接口技术要求.docx
C-V2X(Cellular Vehicle-to-Everything)技术是通信技术与车辆网的结合,它允许车辆与环境中的其他元素,如基础设施、其他车辆甚至行人进行实时通信,以提升交通安全性、效率和驾驶体验。 **1. MEC与C-V2X融合** ...
[net毕业设计]ASP.NET基于BS结构的实验室预约模型系统(源代码+论文).zip
【项目资源】:包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。【项目质量】:所有源码都经过严格测试,可以直接运行。功能在确认正常工作后才上传。【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。【附加价值】:项目具有较高的学习借鉴价值,也可直接拿来修改复刻。对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。【沟通交流】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。鼓励下载和使用,并欢迎大家互相学习,共同进步。
MATLAB实现小波阈值去噪:Visushrink硬软算法对比
资源摘要信息:"本资源提供了一套基于MATLAB实现的小波阈值去噪算法代码。用户可以通过运行主文件"project.m"来执行该去噪算法,并观察到对一张256x256像素的黑白“莱娜”图片进行去噪的全过程。此算法包括了添加AWGN(加性高斯白噪声)的过程,并展示了通过Visushrink硬阈值和软阈值方法对图像去噪的对比结果。此外,该实现还包括了对图像信噪比(SNR)的计算以及将噪声图像和去噪后的图像的打印输出。Visushrink算法的参考代码由M.Kiran Kumar提供,可以在Mathworks网站上找到。去噪过程中涉及到的Lipschitz指数计算,是基于Venkatakrishnan等人的研究,使用小波变换模量极大值(WTMM)的方法来测量。" 知识点详细说明: 1. MATLAB环境使用:本代码要求用户在MATLAB环境下运行。MATLAB是一种高性能的数值计算和可视化环境,广泛应用于工程计算、算法开发和数据分析等领域。 2. 小波阈值去噪:小波去噪是信号处理中的一个技术,用于从信号中去除噪声。该技术利用小波变换将信号分解到不同尺度的子带,然后根据信号与噪声在小波域中的特性差异,通过设置阈值来消除或减少噪声成分。 3. Visushrink算法:Visushrink算法是一种小波阈值去噪方法,由Donoho和Johnstone提出。该算法的硬阈值和软阈值是两种不同的阈值处理策略,硬阈值会将小波系数小于阈值的部分置零,而软阈值则会将这部分系数缩减到零。硬阈值去噪后的信号可能有更多震荡,而软阈值去噪后的信号更为平滑。 4. AWGN(加性高斯白噪声)添加:在模拟真实信号处理场景时,通常需要对原始信号添加噪声。AWGN是一种常见且广泛使用的噪声模型,它假设噪声是均值为零、方差为N0/2的高斯分布,并且与信号不相关。 5. 图像处理:该实现包含了图像处理的相关知识,包括图像的读取、显示和噪声添加。此外,还涉及了图像去噪前后视觉效果的对比展示。 6. 信噪比(SNR)计算:信噪比是衡量信号质量的一个重要指标,反映了信号中有效信息与噪声的比例。在图像去噪的过程中,通常会计算并比较去噪前后图像的SNR值,以评估去噪效果。 7. Lipschitz指数计算:Lipschitz指数是衡量信号局部变化复杂性的一个量度,通常用于描述信号在某个尺度下的变化规律。在小波去噪过程中,Lipschitz指数可用于确定是否保留某个小波系数,因为它与信号的奇异性相关联。 8. WTMM(小波变换模量极大值):小波变换模量极大值方法是一种小波分析技术,用于检测信号中的奇异点或边缘。该技术通过寻找小波系数模量极大值的变化来推断信号的局部特征。 9. 系统开源:该资源被标记为“系统开源”,意味着该MATLAB代码及其相关文件是可以公开访问和自由使用的。开源资源为研究人员和开发者提供了学习和实验的机会,有助于知识共享和技术发展。 资源的文件结构包括"Wavelet-Based-Denoising-MATLAB-Code-master",表明用户获取的是一套完整的项目文件夹,其中包含了执行小波去噪算法所需的所有相关文件和脚本。
管理建模和仿真的文件
管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
【交互特征的影响】:分类问题中的深入探讨,如何正确应用交互特征
![【交互特征的影响】:分类问题中的深入探讨,如何正确应用交互特征](https://img-blog.csdnimg.cn/img_convert/21b6bb90fa40d2020de35150fc359908.png) # 1. 交互特征在分类问题中的重要性 在当今的机器学习领域,分类问题一直占据着核心地位。理解并有效利用数据中的交互特征对于提高分类模型的性能至关重要。本章将介绍交互特征在分类问题中的基础重要性,以及为什么它们在现代数据科学中变得越来越不可或缺。 ## 1.1 交互特征在模型性能中的作用 交互特征能够捕捉到数据中的非线性关系,这对于模型理解和预测复杂模式至关重要。例如
c语言从链式队列 中获取头部元素并返回其状态的函数怎么写
在 C 语言中,如果你有一个链式队列的数据结构,通常它会包含两个指针,一个指向队首(front),一个指向队尾(rear)。以下是一个简单的链式队列头部元素获取函数的示例,假设 `Queue` 是你的链式队列结构体,并且已经包含了必要的成员变量: ```c typedef struct Queue { void* data; // 存储数据的指针 struct Queue* front; // 队首指针 struct Queue* rear; // 队尾指针 } Queue; // 获取头部元素并检查是否为空(如果队列为空,返回 NULL 或适当错误值) void*
易语言实现画板图像缩放功能教程
资源摘要信息:"易语言是一种基于中文的编程语言,主要面向中文用户,其特点是使用中文关键词和语法结构,使得中文使用者更容易理解和编写程序。易语言画板图像缩放源码是易语言编写的程序代码,用于实现图形用户界面中的画板组件上图像的缩放功能。通过这个源码,用户可以调整画板上图像的大小,从而满足不同的显示需求。它可能涉及到的图形处理技术包括图像的获取、缩放算法的实现以及图像的重新绘制等。缩放算法通常可以分为两大类:高质量算法和快速算法。高质量算法如双线性插值和双三次插值,这些算法在图像缩放时能够保持图像的清晰度和细节。快速算法如最近邻插值和快速放大技术,这些方法在处理速度上更快,但可能会牺牲一些图像质量。根据描述和标签,可以推测该源码主要面向图形图像处理爱好者或专业人员,目的是提供一种方便易用的方法来实现图像缩放功能。由于源码文件名称为'画板图像缩放.e',可以推断该文件是一个易语言项目文件,其中包含画板组件和图像处理的相关编程代码。" 易语言作为一种编程语言,其核心特点包括: 1. 中文编程:使用中文作为编程关键字,降低了学习编程的门槛,使得不熟悉英文的用户也能够编写程序。 2. 面向对象:易语言支持面向对象编程(OOP),这是一种编程范式,它使用对象及其接口来设计程序,以提高软件的重用性和模块化。 3. 组件丰富:易语言提供了丰富的组件库,用户可以通过拖放的方式快速搭建图形用户界面。 4. 简单易学:由于语法简单直观,易语言非常适合初学者学习,同时也能够满足专业人士对快速开发的需求。 5. 开发环境:易语言提供了集成开发环境(IDE),其中包含了代码编辑器、调试器以及一系列辅助开发工具。 6. 跨平台:易语言支持在多个操作系统平台编译和运行程序,如Windows、Linux等。 7. 社区支持:易语言有着庞大的用户和开发社区,社区中有很多共享的资源和代码库,便于用户学习和解决编程中遇到的问题。 在处理图形图像方面,易语言能够: 1. 图像文件读写:支持常见的图像文件格式如JPEG、PNG、BMP等的读取和保存。 2. 图像处理功能:包括图像缩放、旋转、裁剪、颜色调整、滤镜效果等基本图像处理操作。 3. 图形绘制:易语言提供了丰富的绘图功能,包括直线、矩形、圆形、多边形等基本图形的绘制,以及文字的输出。 4. 图像缩放算法:易语言实现的画板图像缩放功能中可能使用了特定的缩放算法来优化图像的显示效果和性能。 易语言画板图像缩放源码的实现可能涉及到以下几个方面: 1. 获取画板上的图像:首先需要从画板组件中获取到用户当前绘制或已经存在的图像数据。 2. 图像缩放算法的应用:根据用户的需求,应用适当的图像缩放算法对获取的图像数据进行处理。 3. 图像重新绘制:处理后的图像数据需要重新绘制到画板上,以实现缩放后的效果。 4. 用户交互:提供用户界面,让用户能够通过按钮、滑块等控件选择缩放比例和模式,以及触发缩放操作。 5. 性能优化:为了确保图像缩放操作流畅,需要考虑代码的执行效率和资源的合理利用。 在易语言社区中,用户可以根据自己的需求修改和扩展画板图像缩放源码,或者根据提供的API进一步开发更多高级图像处理功能,从而丰富软件的功能和用户体验。
"互动学习:行动中的多样性与论文攻读经历"
多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
【交互特征:优化与调试的艺术】:实战技巧,提升回归模型与分类模型的性能
![【交互特征:优化与调试的艺术】:实战技巧,提升回归模型与分类模型的性能](https://ask.qcloudimg.com/http-save/yehe-8871522/e113209d8f0e317542ca15c510d91a73.png) # 1. 回归模型与分类模型的理论基础 ## 1.1 回归模型与分类模型的区别 回归模型和分类模型是机器学习中最基础的两类监督学习算法,它们在处理问题的本质上存在显著不同。 - **分类模型**:旨在通过数据集中的已知类别(标签)来预测新数据的类别。例如,邮件过滤器将邮件分类为垃圾邮件或正常邮件,或者根据用户的点击行为预测用户是否会购买某个