用python写回归特征消去方法衡量SVM训练集各个参数维度对SVM分类能力的影响的代码
时间: 2023-12-03 20:44:00 浏览: 174
python中SVM分类的参数
以下是一个简单的示例代码,用于实现回归特征消去方法衡量SVM训练集各个参数维度对SVM分类能力的影响:
```python
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target
# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 定义支持向量机分类器
clf = SVC(kernel='linear')
# 训练支持向量机分类器并在测试集上进行预测
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
# 计算分类器的准确率
accuracy = np.mean(y_pred == y_test)
print("Accuracy:", accuracy)
# 计算每个特征的权重
w = clf.coef_
print("Feature weights:", w)
# 回归特征消去方法
for i in range(X_train.shape[1]):
# 从训练集中删除当前特征
X_train_reduced = np.delete(X_train, i, axis=1)
X_test_reduced = np.delete(X_test, i, axis=1)
# 训练支持向量机分类器
clf_reduced = SVC(kernel='linear')
clf_reduced.fit(X_train_reduced, y_train)
# 在测试集上进行预测
y_pred_reduced = clf_reduced.predict(X_test_reduced)
# 计算准确率
accuracy_reduced = np.mean(y_pred_reduced == y_test)
# 计算特征权重的差异
weight_diff = np.abs(w[0][i] - clf_reduced.coef_[0][i])
print("Deleted feature:", iris.feature_names[i])
print("Accuracy with feature:", accuracy)
print("Accuracy without feature:", accuracy_reduced)
print("Weight difference:", weight_diff)
```
这段代码首先加载了鸢尾花数据集,然后将数据集分为训练集和测试集。接着,使用支持向量机分类器进行训练,并在测试集上进行预测,计算分类器的准确率和每个特征的权重。然后,使用回归特征消去方法来衡量每个特征对分类器性能的影响,并计算特征权重的差异。最后,输出特征的名称、包含该特征的分类器的准确率、删除该特征后的分类器的准确率以及特征权重的差异。
阅读全文