使用stm32的gpio 8080接口的模式来驱动st7789v,点亮一个屏

时间: 2024-04-01 14:31:13 浏览: 15
驱动ST7789V液晶屏需要使用SPI接口,而不是8080接口,因此您需要使用STM32的SPI接口来驱动ST7789V液晶屏。以下是使用STM32的SPI接口驱动ST7789V液晶屏的一些基本步骤: 1. 配置SPI接口,包括时钟频率、数据位宽、时序模式等参数。 2. 配置STM32的GPIO口,将SPI的SCK、MOSI、MISO、CS等引脚对应到STM32的GPIO口上。 3. 初始化ST7789V液晶屏,包括复位、初始化命令等。 4. 发送数据到ST7789V液晶屏,包括图像数据、命令等。 具体的实现细节可以参考ST7789V液晶屏的数据手册和STM32的SPI驱动库。
相关问题

使用stm32以8080-Series的模式来驱动st7789v,点亮一个屏

ST7789V液晶屏支持使用8080-Series接口,您可以使用STM32的GPIO模拟出这个接口来驱动该屏幕。以下是使用STM32的GPIO模拟8080-Series接口驱动ST7789V液晶屏的一些基本步骤: 1. 配置STM32的GPIO口,将8080-Series接口的D0-D7、RD、WR、RS、CS等引脚对应到STM32的GPIO口上。 2. 初始化ST7789V液晶屏,包括复位、初始化命令等。具体的初始化命令可以参考ST7789V液晶屏的数据手册。 3. 使用GPIO模拟8080-Series接口的时序,包括写操作和读操作。写操作包括发出写命令、写数据和写时序;读操作包括发出读命令、读数据和读时序。 4. 发送数据到ST7789V液晶屏,包括图像数据、命令等。 具体的实现细节可以参考ST7789V液晶屏的数据手册和STM32的GPIO操作库。需要注意的是,使用GPIO模拟8080-Series接口的方式可能会比SPI接口慢,因此在高速刷新场景下可能会出现卡顿等问题。

STM32 使用GPIO 8080接口方式驱动ST7789V 驱动代码实现

以下是一个使用STM32的GPIO口通过8080接口方式驱动ST7789V的简单示例代码: ```c #include "stm32f10x.h" #include "delay.h" #define LCD_DATA_PORT GPIOA #define LCD_CTRL_PORT GPIOB #define LCD_CS_PIN GPIO_Pin_12 #define LCD_RS_PIN GPIO_Pin_13 #define LCD_WR_PIN GPIO_Pin_14 #define LCD_RD_PIN GPIO_Pin_15 #define LCD_RST_PIN GPIO_Pin_3 void LCD_WriteCommand(uint8_t cmd) { LCD_DATA_PORT->ODR = cmd; LCD_CTRL_PORT->BRR = LCD_RS_PIN; LCD_CTRL_PORT->BRR = LCD_WR_PIN; LCD_CTRL_PORT->BSRR = LCD_WR_PIN; LCD_CTRL_PORT->BSRR = LCD_RS_PIN; } void LCD_WriteData(uint8_t data) { LCD_DATA_PORT->ODR = data; LCD_CTRL_PORT->BSRR = LCD_RS_PIN; LCD_CTRL_PORT->BRR = LCD_WR_PIN; LCD_CTRL_PORT->BSRR = LCD_WR_PIN; } void LCD_Init(void) { // 初始化GPIO口 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB, ENABLE); GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_All; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_Init(LCD_DATA_PORT, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = LCD_CS_PIN | LCD_RS_PIN | LCD_WR_PIN | LCD_RD_PIN | LCD_RST_PIN; GPIO_Init(LCD_CTRL_PORT, &GPIO_InitStructure); // 复位LCD GPIO_SetBits(LCD_CTRL_PORT, LCD_RST_PIN); delay_ms(5); GPIO_ResetBits(LCD_CTRL_PORT, LCD_RST_PIN); delay_ms(10); GPIO_SetBits(LCD_CTRL_PORT, LCD_RST_PIN); delay_ms(120); // 初始化ST7789V LCD_WriteCommand(0x11); // Sleep out delay_ms(120); LCD_WriteCommand(0x36); // Memory data access control LCD_WriteData(0x00); LCD_WriteCommand(0x3A); // Interface pixel format LCD_WriteData(0x05); LCD_WriteCommand(0xB2); // Porch control LCD_WriteData(0x0C); LCD_WriteData(0x0C); LCD_WriteData(0x00); LCD_WriteData(0x33); LCD_WriteData(0x33); LCD_WriteCommand(0xB7); // Gate control LCD_WriteData(0x35); LCD_WriteCommand(0xBB); // VCOMS setting LCD_WriteData(0x19); LCD_WriteCommand(0xC0); // LCM control LCD_WriteData(0x2C); LCD_WriteCommand(0xC2); // VDV and VRH command enable LCD_WriteData(0x01); LCD_WriteData(0xFF); LCD_WriteCommand(0xC3); // VRH set LCD_WriteData(0x11); LCD_WriteCommand(0xC4); // VDV set LCD_WriteData(0x20); LCD_WriteCommand(0xC6); // Frame rate control LCD_WriteData(0x0F); LCD_WriteCommand(0xD0); // Power control LCD_WriteData(0xA4); LCD_WriteData(0xA1); LCD_WriteCommand(0xE0); // Positive gamma correction LCD_WriteData(0xD0); LCD_WriteData(0x08); LCD_WriteData(0x11); LCD_WriteData(0x08); LCD_WriteData(0x0C); LCD_WriteData(0x15); LCD_WriteData(0x39); LCD_WriteData(0x33); LCD_WriteData(0x50); LCD_WriteData(0x36); LCD_WriteData(0x13); LCD_WriteData(0x14); LCD_WriteData(0x29); LCD_WriteData(0x2D); LCD_WriteCommand(0xE1); // Negative gamma correction LCD_WriteData(0xD0); LCD_WriteData(0x08); LCD_WriteData(0x10); LCD_WriteData(0x08); LCD_WriteData(0x06); LCD_WriteData(0x06); LCD_WriteData(0x39); LCD_WriteData(0x44); LCD_WriteData(0x51); LCD_WriteData(0x0B); LCD_WriteData(0x16); LCD_WriteData(0x14); LCD_WriteData(0x2F); LCD_WriteData(0x31); LCD_WriteCommand(0x29); // Display on } int main(void) { LCD_Init(); while (1) { // 显示内容 } } ``` 以上代码只是一个简单的示例,具体的实现方式和细节需要根据具体的硬件和软件环境进行调整和修改,建议您参考ST7789V的数据手册和STM32的硬件文档,以及相关的开发工具和示例代码。

相关推荐

最新推荐

recommend-type

我对stm32中GPIO输入输出模式的理解

初学感觉起来,还是挺复杂的,我在这里想简单的说说自己的理解,希望大家多多交流。
recommend-type

STM32中GPIO的8种工作模式

GPIO_Mode_AIN 模拟输入、GPIO_Mode_IN_FLOATING 浮空输入、GPIO_Mode_IPD 下拉输入 、GPIO_Mode_IPU 上拉输入 、GPIO_Mode_Out_OD 开漏输出、GPIO_Mode_Out_PP 推挽输出、GPIO_Mode_AF_OD 复用开漏输出、GPIO_Mode_...
recommend-type

嵌入式实验报告 stm32f103 跑马灯实验 GPIO口操作

熟悉编译环境,尝试独立进行工程的创建、编译、下载。通过阅读 STM32 芯片手册了解关于 GPIO 的相关内容,并且通过编程实现 LED 流水灯控制。
recommend-type

STM32 GPIO端口的输出速度设置

当STM32的GPIO端口设置为输出模式时,有三种速度可以选择:2MHz、10MHz和50MHz,这个速度是指I/O口驱动电路的速度,是用来选择不同的输出驱动模块,达到最佳的噪声控制和降低功耗的目的。
recommend-type

基于STM32单片机流水灯仿真与程序设计

用STM32一个端口接8个发光二极管,编写程序,实现从左到右轮流点亮8个二极管(即流水灯) 二、仿真电路设计 2.1、环境介绍 仿真采用Proteus 8.9 SP2安装链接 2.2、电路设计 第一步:在Proteus中的[P]选择所需要的...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。