cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING

时间: 2023-07-28 19:07:05 浏览: 75
cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING是OpenCV中特征匹配器Brute-Force Hamming算法的一种实现,它可以用于匹配使用二进制描述子的特征点。 Brute-Force Hamming算法是一种暴力匹配算法,它的原理是将两幅图像的特征描述子进行逐一比较,找到最相似的一组特征点。在使用Brute-Force Hamming算法时,需要将特征描述子编码为二进制字符串,然后使用汉明距离(Hamming distance)来衡量两个二进制字符串之间的相似度。 使用Brute-Force Hamming算法进行特征点匹配的步骤如下: 1. 提取两幅图像的特征点和特征描述子。 2. 将特征描述子编码为二进制字符串。 3. 使用Brute-Force Hamming算法进行特征点匹配。 4. 根据匹配结果筛选出最优的匹配点对。 在OpenCV中,可以通过以下方式创建使用Brute-Force Hamming算法的特征匹配器对象: ``` matcher = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=False) ``` 其中,参数cv2.NORM_HAMMING表示要使用的距离度量方式为汉明距离,crossCheck参数用于指定是否使用交叉验证的方式进行匹配,如果想要使用交叉验证,则将其设为True,否则设为False。函数返回值matcher是一个特征匹配器对象,可以用于进行特征点匹配。
相关问题

cv2.DescriptorMatcher_create()使用BruteForce的代码

以下是使用BruteForce匹配器的示例代码: ```python import cv2 # 读取图像 img1 = cv2.imread('img1.jpg', cv2.IMREAD_GRAYSCALE) img2 = cv2.imread('img2.jpg', cv2.IMREAD_GRAYSCALE) # 创建ORB特征点检测器和描述符提取器 orb = cv2.ORB_create() # 检测关键点和描述符 kp1, des1 = orb.detectAndCompute(img1, None) kp2, des2 = orb.detectAndCompute(img2, None) # 创建BruteForce匹配器 bf = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING) # 匹配特征点描述符 matches = bf.match(des1, des2) # 根据匹配结果排序 matches = sorted(matches, key=lambda x: x.distance) # 绘制匹配结果 img3 = cv2.drawMatches(img1, kp1, img2, kp2, matches[:10], None, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS) # 显示图像 cv2.imshow('Matches', img3) cv2.waitKey(0) cv2.destroyAllWindows() ```

import cv2 # 读取两幅待处理的图像 img1 = cv2.imread('image1.jpg', cv2.IMREAD_GRAYSCALE) img2 = cv2.imread('image2.jpg', cv2.IMREAD_GRAYSCALE) # 对图像进行高斯模糊 img1 = cv2.GaussianBlur(img1, (5, 5), 0) img2 = cv2.GaussianBlur(img2, (5, 5), 0) # 使用Shi-Tomasi算法检测特征点 corners1 = cv2.goodFeaturesToTrack(img1, 100, 0.01, 10) corners2 = cv2.goodFeaturesToTrack(img2, 100, 0.01, 10) # 对特征点进行亚像素定位 corners1 = cv2.cornerSubPix(img1, corners1, (5, 5), (-1, -1), criteria=(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)) corners2 = cv2.cornerSubPix(img2, corners2, (5, 5), (-1, -1), criteria=(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)) # 对特征点进行匹配 matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING) kps1, descs1 = sift.detectAndCompute(img1, None) kps2, descs2 = sift.detectAndCompute(img2, None) matches = matcher.match(descs1, descs2) # 使用RANSAC算法进行匹配点筛选 src_pts = np.float32([kps1[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2) dst_pts = np.float32([kps2[m.trainIdx].pt for m in matches]).reshape(-1, 1, 2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) # 对图像进行配准和拼接 result = cv2.warpPerspective(img1, M, (img1.shape[1] + img2.shape[1], img1.shape[0])) result[0:img2.shape[0], 0:img2.shape[1]] = img2 # 显示结果 cv2.imshow('Result', result) cv2.waitKey() cv2.destroyAllWindows()改进这段代码使其输出特征点连线图和拼接图

import cv2 import numpy as np # 读取两幅待处理的图像 img1 = cv2.imread('image1.jpg', cv2.IMREAD_GRAYSCALE) img2 = cv2.imread('image2.jpg', cv2.IMREAD_GRAYSCALE) # 对图像进行高斯模糊 img1 = cv2.GaussianBlur(img1, (5, 5), 0) img2 = cv2.GaussianBlur(img2, (5, 5), 0) # 使用Shi-Tomasi算法检测特征点 corners1 = cv2.goodFeaturesToTrack(img1, 100, 0.01, 10) corners2 = cv2.goodFeaturesToTrack(img2, 100, 0.01, 10) # 对特征点进行亚像素定位 corners1 = cv2.cornerSubPix(img1, corners1, (5, 5), (-1, -1), criteria=(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)) corners2 = cv2.cornerSubPix(img2, corners2, (5, 5), (-1, -1), criteria=(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)) # 对特征点进行匹配 sift = cv2.xfeatures2d.SIFT_create() matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING) kps1, descs1 = sift.detectAndCompute(img1, None) kps2, descs2 = sift.detectAndCompute(img2, None) matches = matcher.match(descs1, descs2) # 使用RANSAC算法进行匹配点筛选 src_pts = np.float32([kps1[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2) dst_pts = np.float32([kps2[m.trainIdx].pt for m in matches]).reshape(-1, 1, 2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) # 画出特征点连线图 matchesMask = mask.ravel().tolist() h, w = img1.shape draw_params = dict(matchColor=(0, 255, 0), singlePointColor=None, matchesMask=matchesMask, flags=2) img3 = cv2.drawMatches(img1, kps1, img2, kps2, matches, None, **draw_params) cv2.imshow('Feature Matching', img3) # 对图像进行配准和拼接 result = cv2.warpPerspective(img1, M, (img1.shape[1] + img2.shape[1], img1.shape[0])) result[0:img2.shape[0], 0:img2.shape[1]] = img2 # 显示结果 cv2.imshow('Result', result) cv2.waitKey() cv2.destroyAllWindows()

相关推荐

import cv2 import numpy as np # 读取两幅图像 img1 = cv2.imread('D:\wzk\JIEMIAN\images\er_duibidu.jpg') img2 = cv2.imread('D:\wzk\JIEMIAN\images\yi_duibidu.jpg') # 将两幅图像转换为灰度图像 gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) # 提取图像特征点 orb = cv2.ORB_create() kp1, des1 = orb.detectAndCompute(gray1, None) kp2, des2 = orb.detectAndCompute(gray2, None) # 匹配特征点 matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING) matches = matcher.match(des1, des2) # 选择最佳匹配点 matches = sorted(matches, key=lambda x: x.distance) good_matches = matches[:int(len(matches)*0.15)] # 绘制特征点连接图 img3 = cv2.drawMatches(img1, kp1, img2, kp2, good_matches, None, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS) # 计算变换矩阵 src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2) dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) # 拼接图像 result = cv2.warpPerspective(img1, M, (img1.shape[1] + img2.shape[1], img1.shape[0])) result[0:img2.shape[0], 0:img2.shape[1]] = img2 # 保存连接图 cv2.imwrite('D:\wzk\JIEMIAN\Result\ORB-pz.jpg', img3) # 保存第二幅图像 cv2.imwrite('D:\wzk\JIEMIAN\Result\ORB-pj.jpg', result) # 显示结果 cv2.namedWindow("Keypoint Matches", cv2.WINDOW_NORMAL) cv2.imshow("Keypoint Matches", img3) cv2.namedWindow("Result",cv2.WINDOW_NORMAL) cv2.imshow('Result', result) cv2.waitKey(0) cv2.destroyAllWindows()改进为对文件夹内的多幅图像进行配准拼接

import cv2 import numpy as np import os # 定义文件夹路径和结果保存路径 folder_path = 'D:\wzk\JIEMIAN\images' result_path = 'D:\wzk\JIEMIAN\Result\ORB-pj.jpg' # 获取文件夹内所有图像路径 img_paths = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.endswith('.jpg')] # 遍历所有图像,进行配准拼接 result = cv2.imread(img_paths[0]) for i in range(1, len(img_paths)): img = cv2.imread(img_paths[i]) # 将两幅图像转换为灰度图像 gray1 = cv2.cvtColor(result, cv2.COLOR_BGR2GRAY) gray2 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 提取图像特征点 orb = cv2.ORB_create() kp1, des1 = orb.detectAndCompute(gray1, None) kp2, des2 = orb.detectAndCompute(gray2, None) # 匹配特征点 matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING) matches = matcher.match(des1, des2) # 选择最佳匹配点 matches = sorted(matches, key=lambda x: x.distance) good_matches = matches[:int(len(matches)*0.15)] # 计算变换矩阵 src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2) dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) # 拼接图像 result = cv2.warpPerspective(result, M, (result.shape[1] + img.shape[1], result.shape[0])) result[0:img.shape[0], result.shape[1]-img.shape[1]:] = img # 保存拼接结果 cv2.imwrite(result_path, result) # 显示结果 cv2.namedWindow("Result",cv2.WINDOW_NORMAL) cv2.imshow('Result', result) cv2.waitKey(0) cv2.destroyAllWindows()

最新推荐

recommend-type

yolov5-face-landmarks-opencv

yolov5检测人脸和关键点,只依赖opencv库就可以运行,程序包含C++和Python两个版本的。 本套程序根据https://github.com/deepcam-cn/yolov5-face 里提供的训练模型.pt文件。转换成onnx文件, 然后使用opencv读取onnx文件做前向推理,onnx文件从百度云盘下载,下载 链接:https://pan.baidu.com/s/14qvEOB90CcVJwVC5jNcu3A 提取码:duwc 下载完成后,onnx文件存放目录里,C++版本的主程序是main_yolo.cpp,Python版本的主程序是main.py 。此外,还有一个main_export_onnx.py文件,它是读取pytorch训练模型.pt文件生成onnx文件的。 如果你想重新生成onnx文件,不能直接在该目录下运行的,你需要把文件拷贝到https://github.com/deepcam-cn/yolov5-face 的主目录里运行,就可以生成onnx文件。
recommend-type

setuptools-0.6c8-py2.5.egg

文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

5-3.py

5-3
recommend-type

Java八股文.pdf

"Java八股文"是一个在程序员社群中流行的术语,特别是在准备技术面试时。它指的是一系列在Java编程面试中经常被问到的基础知识点、理论概念和技术细节。这个术语的命名来源于中国古代科举考试中的“八股文”,一种具有固定格式和套路的文章形式。 在Java编程的上下文中,"Java八股文"通常包括以下几个方面:"Java八股文"是一个在程序员社群中流行的术语,特别是在准备技术面试时。它指的是一系列在Java编程面试中经常被问到的基础知识点、理论概念和技术细节。这个术语的命名来源于中国古代科举考试中的“八股文”,一种具有固定格式和套路的文章形式。 在Java编程的上下文中,"Java八股文"通常包括以下几个方面:"Java八股文"是一个在程序员社群中流行的术语,特别是在准备技术面试时。它指的是一系列在Java编程面试中经常被问到的基础知识点、理论概念和技术细节。这个术语的命名来源于中国古代科举考试中的“八股文”,一种具有固定格式和套路的文章形式。 在Java编程的上下文中,"Java八股文"通常包括以下几个方面:"Java八股文"是一个在程序员社群中流行的术语,特别是在准备技术面试时。它
recommend-type

麦肯锡咨询顾问必备宝典.ppt

麦肯锡咨询顾问必备宝典.ppt
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。