opencv阈值分割算法c++
时间: 2023-11-07 12:38:21 浏览: 159
Sure, I'd be happy to help you with that! The OpenCV library provides different thresholding methods for image segmentation in C language. The most common ones are binary, adaptive, and Otsu thresholding. Do you have any specific questions about these methods or their implementation in C?
相关问题
实现灰度图像和彩色图像的迭代阈值分割算法opencv c++代码实现
以下是基于OpenCV的灰度图像和彩色图像迭代阈值分割算法的C++代码实现:
灰度图像迭代阈值分割:
```cpp
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;
double thresholdValue(Mat& img) {
double T = 0;
double T_last = -1;
int rows = img.rows;
int cols = img.cols;
int total = rows * cols;
while(abs(T - T_last) > 1) {
double sum1 = 0, sum2 = 0, count1 = 0, count2 = 0;
for(int i = 0; i < rows; ++i) {
for(int j = 0; j < cols; ++j) {
if(img.at<uchar>(i, j) > T) {
sum1 += img.at<uchar>(i, j);
count1++;
} else {
sum2 += img.at<uchar>(i, j);
count2++;
}
}
}
T_last = T;
T = (sum1 / count1 + sum2 / count2) / 2;
}
return T;
}
int main() {
Mat img = imread("lena.jpg", IMREAD_GRAYSCALE);
if(img.empty()) {
cout << "Could not read the image" << endl;
return -1;
}
double T = thresholdValue(img);
Mat dst;
threshold(img, dst, T, 255, THRESH_BINARY);
namedWindow("Original Image", WINDOW_NORMAL);
namedWindow("Thresholded Image", WINDOW_NORMAL);
imshow("Original Image", img);
imshow("Thresholded Image", dst);
waitKey(0);
return 0;
}
```
彩色图像迭代阈值分割:
```cpp
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;
double thresholdValue(Mat& img) {
double T = 0;
double T_last = -1;
int rows = img.rows;
int cols = img.cols;
int total = rows * cols;
while(abs(T - T_last) > 1) {
double sum1 = 0, sum2 = 0, count1 = 0, count2 = 0;
for(int i = 0; i < rows; ++i) {
for(int j = 0; j < cols; ++j) {
Vec3b pixel = img.at<Vec3b>(i, j);
int gray = (pixel[0] + pixel[1] + pixel[2]) / 3;
if(gray > T) {
sum1 += gray;
count1++;
} else {
sum2 += gray;
count2++;
}
}
}
T_last = T;
T = (sum1 / count1 + sum2 / count2) / 2;
}
return T;
}
int main() {
Mat img = imread("lena.jpg");
if(img.empty()) {
cout << "Could not read the image" << endl;
return -1;
}
double T = thresholdValue(img);
Mat dst;
cvtColor(img, dst, COLOR_BGR2GRAY);
threshold(dst, dst, T, 255, THRESH_BINARY);
namedWindow("Original Image", WINDOW_NORMAL);
namedWindow("Thresholded Image", WINDOW_NORMAL);
imshow("Original Image", img);
imshow("Thresholded Image", dst);
waitKey(0);
return 0;
}
```
opencv c++阈值分割otsu
Otsu阈值分割是一种图像二值化算法,它可以自适应地确定一个阈值,使得分割后的两部分图像的类内方差最小、类间方差最大。它在OpenCV中的实现函数为cv::threshold,可通过设置第三个参数为cv::THRESH_OTSU来使用Otsu阈值分割。
具体来说,Otsu阈值分割算法的步骤如下:
1. 统计图像的灰度级直方图,计算每个灰度级出现的概率;
2. 初始化总类间方差为0,对于每个可能的阈值T,计算其对应的类内方差和类间方差,并更新总类间方差;
3. 找到总类间方差最大的阈值,作为最终的阈值。
阅读全文