用python绘制包含误差线的柱形图

时间: 2023-06-30 21:03:35 浏览: 109
要绘制包含误差线的柱形图,需要使用 Matplotlib 库。以下是一个简单的示例代码: ``` python import numpy as np import matplotlib.pyplot as plt # 生成数据 means = [10, 15, 20] stds = [2, 3, 4] labels = ['A', 'B', 'C'] x_pos = np.arange(len(means)) # 绘制柱形图 plt.bar(x_pos, means, yerr=stds, align='center', alpha=0.5) plt.xticks(x_pos, labels) plt.ylabel('Values') plt.title('Bar plot with error bars') # 显示图形 plt.show() ``` 解释一下代码: - `means` 是每个柱形的高度,`stds` 是每个柱形的误差,`labels` 是每个柱形的标签。 - `x_pos` 是每个柱形的 x 坐标。 - `plt.bar()` 函数用于绘制柱形图,`yerr` 参数设置误差线的长度,`align` 参数设置柱形的对齐方式,`alpha` 参数设置柱形的透明度。 - `plt.xticks()` 函数设置 x 轴刻度标签。 - `plt.ylabel()` 函数设置 y 轴标签。 - `plt.title()` 函数设置图形标题。 - `plt.show()` 函数显示图形。 运行代码,就可以得到一个包含误差线的柱形图。
相关问题

python 预测平方误差_4种绘制带误差线的柱形图

好的,我来回答你的问题。 首先,关于 Python 预测平方误差,我需要明确你的问题是想要如何预测平方误差,还是想要如何计算平方误差。如果是前者,可以考虑使用机器学习模型进行预测;如果是后者,可以使用以下公式进行计算: 平方误差 = (真实值 - 预测值) ^ 2 其次,关于绘制带误差线的柱形图,可以使用以下 4 种方法: 1. 使用 matplotlib 库绘制带误差线的柱形图: ```python import matplotlib.pyplot as plt # 定义数据 data = [1, 2, 3, 4, 5] errors = [0.1, 0.2, 0.3, 0.4, 0.5] # 绘制柱形图 plt.bar(range(len(data)), data, yerr=errors, capsize=10) # 显示图形 plt.show() ``` 2. 使用 seaborn 库绘制带误差线的柱形图: ```python import seaborn as sns # 定义数据 data = [1, 2, 3, 4, 5] errors = [0.1, 0.2, 0.3, 0.4, 0.5] # 绘制柱形图 sns.barplot(x=range(len(data)), y=data, yerr=errors, capsize=0.1) # 显示图形 plt.show() ``` 3. 使用 plotly 库绘制带误差线的柱形图: ```python import plotly.graph_objects as go # 定义数据 data = [1, 2, 3, 4, 5] errors = [0.1, 0.2, 0.3, 0.4, 0.5] # 绘制柱形图 fig = go.Figure(data=[go.Bar(x=range(len(data)), y=data, error_y=dict(type='data', array=errors))]) # 显示图形 fig.show() ``` 4. 使用 bokeh 库绘制带误差线的柱形图: ```python from bokeh.io import show from bokeh.models import ColumnDataSource, Whisker from bokeh.plotting import figure # 定义数据 data = [1, 2, 3, 4, 5] errors = [0.1, 0.2, 0.3, 0.4, 0.5] # 创建绘图数据源 source = ColumnDataSource(data=dict(x=range(len(data)), y=data, error=errors)) # 创建绘图对象 p = figure(plot_width=400, plot_height=400) # 绘制柱形图 p.vbar(x='x', top='y', width=0.9, source=source) # 添加误差线 errorbar = Whisker(source=source, base='x', upper='y', lower='y-error', line_color='black') p.add_layout(errorbar) # 显示图形 show(p) ``` 以上就是 4 种绘制带误差线的柱形图的方法,希望能对你有所帮助。

绘制柱形图 包含误差线

### 回答1: 绘制柱形图包含误差线,可以使用Python的matplotlib库。以下是示例代码: ```python import matplotlib.pyplot as plt # 数据 x = [1, 2, 3, 4, 5] y = [5, 7, 6, 8, 9] error = [0.5, 0.4, 0.7, 0.2, 0.3] # 绘制柱形图 plt.bar(x, y, yerr=error, capsize=5) # 设置图形属性 plt.xlabel('X轴') plt.ylabel('Y轴') plt.title('柱形图') # 显示图形 plt.show() ``` 在示例代码中,我们使用了`plt.bar()`函数来绘制柱形图,并设置了误差线的长度为0.5、0.4、0.7、0.2、0.3,误差线的顶部和底部使用了`capsize`参数进行设置。最后,我们设置了图形的横轴、纵轴和标题,并调用`plt.show()`函数显示图形。 ### 回答2: 绘制柱形图时,可以使用误差线来显示数据的变动范围。误差线可以有效地表达柱形图中数据的置信度和可靠性。 要绘制柱形图包含误差线,首先需要确定柱形图的数据和误差大小。一般来说,柱形图的每个柱代表一组数据,柱的高度表示该组数据的大小。误差线则表示该组数据的误差大小。 在绘制柱形图时,可以为每个柱形添加上下误差线。上误差线表示该组数据的最大值,下误差线表示该组数据的最小值。误差线可以用不同颜色或样式进行标识,以便区分。 为了让柱形图更清晰和易读,可以在柱形的顶部或底部添加误差线的标记。这样,读者可以一目了然地看出每个柱形数据的变动范围。 绘制柱形图包含误差线的步骤如下: 1. 收集数据并确定每组数据的误差大小。 2. 在纸上或电脑绘图软件上绘制坐标轴,确定横轴和纵轴。 3. 根据数据确定每个柱形的高度,绘制柱形图的柱。 4. 在每个柱形的顶部或底部添加上下误差线。 5. 按照需要,为误差线添加标记和符号,以便更清晰地表达数据的变动范围。 6. 添加图例和标题,使柱形图更具可读性和可理解性。 总之,绘制柱形图包含误差线可以更直观和准确地展示数据的变动范围,有助于读者更全面地理解数据的内涵。 ### 回答3: 柱形图是一种用于可视化数据的图表类型,通过绘制垂直的柱形来表示不同类别或组之间的数值差异。为了更准确地表达数据的不确定性和误差范围,可以在柱形图中添加误差线。 绘制包含误差线的柱形图需要遵循以下步骤: 1. 收集数据:首先,需要收集所需的数据,包括不同类别或组之间的数值和相应的误差范围。 2. 创建柱形图:使用绘图工具(如Excel、Matplotlib等),创建柱形图。将不同类别或组的名称作为横轴的刻度标签,将数值作为纵轴的刻度标签,并绘制相应的柱形。 3. 添加误差线:根据收集到的误差范围数据,确定每个柱形所代表的误差范围。可以使用垂直线、水平线或者带状区域来表示误差范围。 4. 标注误差线:在柱形图上标注误差线的信息,可以使用文字标注、箭头或其他符号来表示。确保标注清晰明了,以便读者能够准确理解误差范围。 5. 美化图表:根据需要,可以增加标题、坐标轴标签、图例等元素来增加图表的可读性和美观性。 绘制包含误差线的柱形图可以更加直观地展现数据的差异和误差范围,帮助读者更好地理解数据。同时,合理的标注和美化可以增加图表的可读性和吸引力。
阅读全文

相关推荐

zip
1.版本:matlab2014/2019a/2021a,内含运行结果,不会运行可私信 2.领域:智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多内容可点击博主头像 3.内容:标题所示,对于介绍可点击主页搜索博客 4.适合人群:本科,硕士等教研学习使用 5.博客介绍:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可si信 %% 开发者:Matlab科研助手 %% 更多咨询关注天天Matlab微信公众号 ### 团队长期从事下列领域算法的研究和改进: ### 1 智能优化算法及应用 **1.1 改进智能优化算法方面(单目标和多目标)** **1.2 生产调度方面** 1.2.1 装配线调度研究 1.2.2 车间调度研究 1.2.3 生产线平衡研究 1.2.4 水库梯度调度研究 **1.3 路径规划方面** 1.3.1 旅行商问题研究(TSP、TSPTW) 1.3.2 各类车辆路径规划问题研究(vrp、VRPTW、CVRP) 1.3.3 机器人路径规划问题研究 1.3.4 无人机三维路径规划问题研究 1.3.5 多式联运问题研究 1.3.6 无人机结合车辆路径配送 **1.4 三维装箱求解** **1.5 物流选址研究** 1.5.1 背包问题 1.5.2 物流选址 1.5.4 货位优化 ##### 1.6 电力系统优化研究 1.6.1 微电网优化 1.6.2 配电网系统优化 1.6.3 配电网重构 1.6.4 有序充电 1.6.5 储能双层优化调度 1.6.6 储能优化配置 ### 2 神经网络回归预测、时序预测、分类清单 **2.1 bp预测和分类** **2.2 lssvm预测和分类** **2.3 svm预测和分类** **2.4 cnn预测和分类** ##### 2.5 ELM预测和分类 ##### 2.6 KELM预测和分类 **2.7 ELMAN预测和分类** ##### 2.8 LSTM预测和分类 **2.9 RBF预测和分类** ##### 2.10 DBN预测和分类 ##### 2.11 FNN预测 ##### 2.12 DELM预测和分类 ##### 2.13 BIlstm预测和分类 ##### 2.14 宽度学习预测和分类 ##### 2.15 模糊小波神经网络预测和分类 ##### 2.16 GRU预测和分类 ### 3 图像处理算法 **3.1 图像识别** 3.1.1 车牌、交通标志识别(新能源、国内外、复杂环境下车牌) 3.1.2 发票、身份证、银行卡识别 3.1.3 人脸类别和表情识别 3.1.4 打靶识别 3.1.5 字符识别(字母、数字、手写体、汉字、验证码) 3.1.6 病灶识别 3.1.7 花朵、药材、水果蔬菜识别 3.1.8 指纹、手势、虹膜识别 3.1.9 路面状态和裂缝识别 3.1.10 行为识别 3.1.11 万用表和表盘识别 3.1.12 人民币识别 3.1.13 答题卡识别 **3.2 图像分割** **3.3 图像检测** 3.3.1 显著性检测 3.3.2 缺陷检测 3.3.3 疲劳检测 3.3.4 病害检测 3.3.5 火灾检测 3.3.6 行人检测 3.3.7 水果分级 **3.4 图像隐藏** **3.5 图像去噪** **3.6 图像融合** **3.7 图像配准** **3.8 图像增强** **3.9 图像压缩** ##### 3.10 图像重建 ### 4 信号处理算法 **4.1 信号识别** **4.2 信号检测** **4.3 信号嵌入和提取** **4.4 信号去噪** ##### 4.5 故障诊断 ##### 4.6 脑电信号 ##### 4.7 心电信号 ##### 4.8 肌电信号 ### 5 元胞自动机仿真 **5.1 模拟交通流** **5.2 模拟人群疏散** **5.3 模拟病毒扩散** **5.4 模拟晶体生长** ### 6 无线传感器网络 ##### 6.1 无线传感器定位(Dv-Hop定位优化、RSSI定位优化) ##### 6.2 无线传感器覆盖优化 ##### 6.3 无线传感器通信及优化(Leach协议优化) ##### 6.4 无人机通信中继优化(组播优化)

最新推荐

recommend-type

python数据可视化1(柱状图案例)

在这个案例中,我们将学习如何使用Python的matplotlib库创建柱状图,这对于数据分析和报告非常有用。matplotlib库提供了丰富的功能,可以绘制出各种复杂的图形,包括柱状图、折线图、散点图等。 首先,我们需要导入...
recommend-type

STM32之光敏电阻模拟路灯自动开关灯代码固件

这是一个STM32模拟天黑天亮自动开关灯代码固件,使用了0.96寸OLED屏幕显示文字,例程亲测可用,视频示例可B站搜索 285902929
recommend-type

简化填写流程:Annoying Form Completer插件

资源摘要信息:"Annoying Form Completer-crx插件" Annoying Form Completer是一个针对Google Chrome浏览器的扩展程序,其主要功能是帮助用户自动填充表单中的强制性字段。对于经常需要在线填写各种表单的用户来说,这是一个非常实用的工具,因为它可以节省大量时间,并减少因重复输入相同信息而产生的烦恼。 该扩展程序的描述中提到了用户在填写表格时遇到的麻烦——必须手动输入那些恼人的强制性字段。这些字段可能包括但不限于用户名、邮箱地址、电话号码等个人信息,以及各种密码、确认密码等重复性字段。Annoying Form Completer的出现,使这一问题得到了缓解。通过该扩展,用户可以在表格填充时减少到“一个压力……或两个”,意味着极大的方便和效率提升。 值得注意的是,描述中也使用了“抽浏览器”的表述,这可能意味着该扩展具备某种数据提取或自动化填充的机制,虽然这个表述不是一个标准的技术术语,它可能暗示该扩展程序能够从用户之前的行为或者保存的信息中提取必要数据并自动填充到表单中。 虽然该扩展程序具有很大的便利性,但用户在使用时仍需谨慎,因为自动填充个人信息涉及到隐私和安全问题。理想情况下,用户应该只在信任的网站上使用这种类型的扩展程序,并确保扩展程序是从可靠的来源获取,以避免潜在的安全风险。 根据【压缩包子文件的文件名称列表】中的信息,该扩展的文件名为“Annoying_Form_Completer.crx”。CRX是Google Chrome扩展的文件格式,它是一种压缩的包格式,包含了扩展的所有必要文件和元数据。用户可以通过在Chrome浏览器中访问chrome://extensions/页面,开启“开发者模式”,然后点击“加载已解压的扩展程序”按钮来安装CRX文件。 在标签部分,我们看到“扩展程序”这一关键词,它明确了该资源的性质——这是一个浏览器扩展。扩展程序通常是通过增加浏览器的功能或提供额外的服务来增强用户体验的小型软件包。这些程序可以极大地简化用户的网上活动,从保存密码、拦截广告到自定义网页界面等。 总结来看,Annoying Form Completer作为一个Google Chrome的扩展程序,提供了一个高效的解决方案,帮助用户自动化处理在线表单的填写过程,从而提高效率并减少填写表单时的麻烦。在享受便捷的同时,用户也应确保使用扩展程序时的安全性和隐私性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

CC-LINK远程IO模块AJ65SBTB1现场应用指南:常见问题快速解决

# 摘要 CC-LINK远程IO模块作为一种工业通信技术,为自动化和控制系统提供了高效的数据交换和设备管理能力。本文首先概述了CC-LINK远程IO模块的基础知识,接着详细介绍了其安装与配置流程,包括硬件的物理连接和系统集成要求,以及软件的参数设置与优化。为应对潜在的故障问题,本文还提供了故障诊断与排除的方法,并探讨了故障解决的实践案例。在高级应用方面,文中讲述了如何进行编程与控制,以及如何实现系统扩展与集成。最后,本文强调了CC-LINK远程IO模块的维护与管理的重要性,并对未来技术发展趋势进行了展望。 # 关键字 CC-LINK远程IO模块;系统集成;故障诊断;性能优化;编程与控制;维护
recommend-type

使用MATLAB写一个在柱坐标系中实现以下功能的代码:1) 生成具有损耗的平面电磁波模型;2) 调整电场分量Ex和Ey的幅度和相位,以仿真三种极化的形成?

在MATLAB中,处理电磁学问题通常需要利用`physconst`、`polar2cartesian`等函数库。以下是一个简化的示例,展示了如何生成一个基本的平面电磁波模型,并调整电场分量的幅度和相位。请注意,实际的损耗模型通常会涉及到复杂的阻抗和吸收系数,这里我们将简化为理想情况。 ```matlab % 初始化必要的物理常数 c = physconst('LightSpeed'); % 光速 omega = 2*pi * 5e9; % 角频率 (例如 GHz) eps0 = physconst('PermittivityOfFreeSpace'); % 真空介电常数 % 定义网格参数
recommend-type

TeraData技术解析与应用

资源摘要信息: "TeraData是一个高性能、高可扩展性的数据仓库和数据库管理系统,它支持大规模的数据存储和复杂的数据分析处理。TeraData的产品线主要面向大型企业级市场,提供多种数据仓库解决方案,包括并行数据仓库和云数据仓库等。由于其强大的分析能力和出色的处理速度,TeraData被广泛应用于银行、电信、制造、零售和其他需要处理大量数据的行业。TeraData系统通常采用MPP(大规模并行处理)架构,这意味着它可以通过并行处理多个计算任务来显著提高性能和吞吐量。" 由于提供的信息中描述部分也是"TeraData",且没有详细的内容,所以无法进一步提供关于该描述的详细知识点。而标签和压缩包子文件的文件名称列表也没有提供更多的信息。 在讨论TeraData时,我们可以深入了解以下几个关键知识点: 1. **MPP架构**:TeraData使用大规模并行处理(MPP)架构,这种架构允许系统通过大量并行运行的处理器来分散任务,从而实现高速数据处理。在MPP系统中,数据通常分布在多个节点上,每个节点负责一部分数据的处理工作,这样能够有效减少数据传输的时间,提高整体的处理效率。 2. **并行数据仓库**:TeraData提供并行数据仓库解决方案,这是针对大数据环境优化设计的数据库架构。它允许同时对数据进行读取和写入操作,同时能够支持对大量数据进行高效查询和复杂分析。 3. **数据仓库与BI**:TeraData系统经常与商业智能(BI)工具结合使用。数据仓库可以收集和整理来自不同业务系统的数据,BI工具则能够帮助用户进行数据分析和决策支持。TeraData的数据仓库解决方案提供了一整套的数据分析工具,包括但不限于ETL(抽取、转换、加载)工具、数据挖掘工具和OLAP(在线分析处理)功能。 4. **云数据仓库**:除了传统的本地部署解决方案,TeraData也在云端提供了数据仓库服务。云数据仓库通常更灵活、更具可伸缩性,可根据用户的需求动态调整资源分配,同时降低了企业的运维成本。 5. **高可用性和扩展性**:TeraData系统设计之初就考虑了高可用性和可扩展性。系统可以通过增加更多的处理节点来线性提升性能,同时提供了多种数据保护措施以保证数据的安全和系统的稳定运行。 6. **优化与调优**:对于数据仓库而言,性能优化是一个重要的环节。TeraData提供了一系列的优化工具和方法,比如SQL调优、索引策略和执行计划分析等,来帮助用户优化查询性能和提高数据访问效率。 7. **行业应用案例**:在金融、电信、制造等行业中,TeraData可以处理海量的交易数据、客户信息和业务数据,它在欺诈检测、客户关系管理、供应链优化等关键业务领域发挥重要作用。 8. **集成与兼容性**:TeraData系统支持与多种不同的业务应用和工具进行集成。它也遵循行业标准,能够与其他数据源、分析工具和应用程序无缝集成,为用户提供一致的用户体验。 以上便是关于TeraData的知识点介绍。由于文件描述内容重复且过于简略,未能提供更深层次的介绍,如果需要进一步详细的知识,建议参考TeraData官方文档或相关技术文章以获取更多的专业信息。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

CC-LINK远程IO模块在环境监控中的应用:技术与案例探讨

![CC-LINK](https://www.mitsubishielectric.com/fa/products/cnt/plcnet/pmerit/cclink_ie/concept/img/main_img.jpg) # 摘要 CC-LINK远程IO模块作为一种先进的工业通信技术,在环境监控系统中具有广泛应用。本文首先概述了CC-LINK远程IO模块的基本概念及其在环境监控系统中的基础理论,包括硬件组成、软件架构及技术优势。随后,详细介绍了其在实时监控与远程控制、系统集成与配置、安全维护方面的具体实践应用。案例分析部分深入探讨了CC-LINK模块在不同环境监控场景中的应用效果与技术解决
recommend-type

mysql语句创建一个学生数据表,包含学号,姓名,性别,出生日期和身高字段

在MySQL中,你可以使用`CREATE TABLE`语句来创建一个名为"students"的学生信息表。以下是创建该表的基本结构: ```sql CREATE TABLE students ( student_id INT PRIMARY KEY, -- 学号,主键 name VARCHAR(50) NOT NULL, -- 姓名,非空 gender ENUM('Male', 'Female') -- 性别,枚举类型 -- (这里假设只有两个选项,可根据需要调整) birth_date DAT