帮我写一个mapreduce商品推荐数据及源码
时间: 2024-05-08 09:18:21 浏览: 65
hadoop mapreduce实现 基于内容的推荐算法+源代码+文档说明
好的,我可以为您提供一个示例的MapReduce程序用于商品推荐。请注意,这只一个示例,您需要根据您的数据自定义。
首先,您需要提供两个输入文件:一个是商品和它们的属性,第二个是用户和他们购买的商品。示例数据结构如下:
商品和属性文件:
```
Product1, category1
Product2, category2
Product3, category1
Product4, category2
Product5, category3
```
用户和购买商品文件:
```
User1, Product1
User1, Product2
User2, Product3
User3, Product4
User4, Product3
User4, Product5
```
然后,您需要实现两个MapReduce任务。第一个任务用来计算商品之间的相关性,第二个任务用来根据用户购买历史记录推荐商品。
第一个任务:
Mapper:
```
public class ProductMapper extends Mapper<LongWritable, Text, TextPair, IntWritable> {
private final TextPair pair = new TextPair();
private final IntWritable one = new IntWritable(1);
@Override
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] split = value.toString().split(",");
pair.setFirst(split[1]);
pair.setSecond(split[0]);
context.write(pair, one);
}
}
```
Reducer:
```
public class ProductReducer extends Reducer<TextPair, IntWritable, TextPair, DoubleWritable> {
private final TextPair pair = new TextPair();
private final DoubleWritable result = new DoubleWritable();
@Override
public void reduce(TextPair key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable value : values) {
sum += value.get();
}
pair.setFirst(key.getFirst());
pair.setSecond(key.getSecond());
double correlation = (double) sum / context.getConfiguration().getInt("total_users", 1);
result.set(correlation);
context.write(pair, result);
}
}
```
第二个任务:
Mapper:
```
public class UserMapper extends Mapper<LongWritable, Text, Text, Text> {
private final Text user = new Text();
private final Text item = new Text();
@Override
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] split = value.toString().split(",");
user.set(split[0]);
item.set(split[1]);
context.write(user, item);
}
}
```
Reducer:
```
public class UserReducer extends Reducer<Text, Text, Text, Text> {
private final Text output = new Text();
@Override
public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
Map<Text, Double> recommendations = new HashMap<>();
for (Text value : values) {
recommendations.put(value, 0.0);
for (Map.Entry<TextPair, DoubleWritable> entry : context.getCacheFilesData().entrySet()) {
TextPair pair = entry.getKey();
double correlation = entry.getValue().get();
if (pair.getSecond().equals(value)) {
recommendations.compute(pair.getFirst(), (k, v) -> v == null ? correlation : v + correlation);
}
}
}
List<Map.Entry<Text, Double>> list = new ArrayList<>(recommendations.entrySet());
list.sort((o1, o2) -> o2.getValue().compareTo(o1.getValue()));
output.set(list.subList(0, 5).toString());
context.write(key, output);
}
}
```
您需要将这两个任务配置到一个Job中。在Job Configuration中,您需要将所有相关性放到一个分布式缓存中,以便在第二个任务中进行推荐。以下是示例代码:
```
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(RecommendationJob.class);
job.setJobName("Recommendation");
job.setMapperClass(ProductMapper.class);
job.setMapOutputKeyClass(TextPair.class);
job.setMapOutputValueClass(IntWritable.class);
job.setReducerClass(ProductReducer.class);
job.setOutputKeyClass(TextPair.class);
job.setOutputValueClass(DoubleWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);
Configuration conf2 = new Configuration();
Job job2 = Job.getInstance(conf2);
job2.setJarByClass(RecommendationJob.class);
job2.setJobName("Recommendation2");
job2.setMapperClass(UserMapper.class);
job2.setMapOutputKeyClass(Text.class);
job2.setMapOutputValueClass(Text.class);
job2.setReducerClass(UserReducer.class);
job2.setOutputKeyClass(Text.class);
job2.setOutputValueClass(Text.class);
job2.addCacheFile(new URI(args[1] + "/part-r-00000#product_correlations"));
FileInputFormat.addInputPath(job2, new Path(args[2]));
FileOutputFormat.setOutputPath(job2, new Path(args[3]));
job2.waitForCompletion(true);
```
希望这个示例对您有所帮助。如果您需要任何其他帮助,请告诉我。
阅读全文