请写出MobileNet神经网络的pytorch代码
时间: 2023-03-27 19:02:05 浏览: 99
PyTorch构建一个简单的神经网络进行手写数字识别
以下是MobileNet神经网络的pytorch代码:
```
import torch.nn as nn
class MobileNet(nn.Module):
def __init__(self, num_classes=100):
super(MobileNet, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(32)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(64)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(128)
self.conv4 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False)
self.bn4 = nn.BatchNorm2d(128)
self.conv5 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False)
self.bn5 = nn.BatchNorm2d(256)
self.conv6 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False)
self.bn6 = nn.BatchNorm2d(256)
self.conv7 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False)
self.bn7 = nn.BatchNorm2d(512)
self.conv8 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False)
self.bn8 = nn.BatchNorm2d(512)
self.conv9 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False)
self.bn9 = nn.BatchNorm2d(512)
self.conv10 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False)
self.bn10 = nn.BatchNorm2d(512)
self.conv11 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False)
self.bn11 = nn.BatchNorm2d(512)
self.conv12 = nn.Conv2d(512, 1024, kernel_size=3, stride=2, padding=1, bias=False)
self.bn12 = nn.BatchNorm2d(1024)
self.conv13 = nn.Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, bias=False)
self.bn13 = nn.BatchNorm2d(1024)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(1024, num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu(x)
x = self.conv4(x)
x = self.bn4(x)
x = self.relu(x)
x = self.conv5(x)
x = self.bn5(x)
x = self.relu(x)
x = self.conv6(x)
x = self.bn6(x)
x = self.relu(x)
x = self.conv7(x)
x = self.bn7(x)
x = self.relu(x)
x = self.conv8(x)
x = self.bn8(x)
x = self.relu(x)
x = self.conv9(x)
x = self.bn9(x)
x = self.relu(x)
x = self.conv10(x)
x = self.bn10(x)
x = self.relu(x)
x = self.conv11(x)
x = self.bn11(x)
x = self.relu(x)
x = self.conv12(x)
x = self.bn12(x)
x = self.relu(x)
x = self.conv13(x)
x = self.bn13(x)
x = self.relu(x)
x = self.avgpool(x)
x = x.view(x.size(), -1)
x = self.fc(x)
return x
```
阅读全文