jupyter notebook中split使用方法
时间: 2023-12-25 12:29:11 浏览: 136
在Jupyter Notebook中,可以使用split方法来拆分单元格。具体使用方法如下:
1. 首先,选中需要拆分的单元格。可以通过点击单元格左侧的边框来选中单元格。
2. 然后,使用快捷键Shift + M(或者在菜单栏中选择"Edit" -> "Split Cell")来拆分选中的单元格。拆分后,原来的单元格会被分成两个单元格,光标会停留在新拆分出来的单元格中。
3. 如果需要继续拆分单元格,可以重复上述步骤。
需要注意的是,拆分单元格只能在代码单元格和Markdown单元格中进行,对于其他类型的单元格(如Raw NBConvert、Heading等),拆分操作是无效的。
相关问题
jupyter notebook中GBM调参
以下是在Jupyter Notebook中使用LightGBM进行调参的步骤:
1.导入必要的库和数据集
```python
import lightgbm as lgb
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
data = load_breast_cancer()
X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2, random_state=42)
```
2.将数据集转换为LightGBM的数据格式
```python
train_data = lgb.Dataset(X_train, label=y_train)
test_data = lgb.Dataset(X_test, label=y_test)
```
3.设置参数空间并进行调参
```python
from hyperopt import fmin, tpe, hp, STATUS_OK, Trials
space = {
'max_depth': hp.quniform('max_depth', 2, 10, 1),
'learning_rate': hp.loguniform('learning_rate', -5, 0),
'n_estimators': hp.quniform('n_estimators', 50, 500, 1),
'subsample': hp.uniform('subsample', 0.1, 1),
'colsample_bytree': hp.uniform('colsample_bytree', 0.1, 1),
'reg_alpha': hp.uniform('reg_alpha', 0, 1),
'reg_lambda': hp.uniform('reg_lambda', 0, 1),
'min_child_weight': hp.quniform('min_child_weight', 1, 10, 1),
'objective': 'binary',
'boosting_type': 'gbdt',
'metric': 'binary_logloss',
'num_threads': 4,
'verbose': -1
}
def objective(params):
model = lgb.train(params, train_data, valid_sets=[test_data], num_boost_round=1000, early_stopping_rounds=50, verbose_eval=False)
score = model.best_score['valid_0']['binary_logloss']
return {'loss': score, 'status': STATUS_OK}
trials = Trials()
best = fmin(fn=objective, space=space, algo=tpe.suggest, max_evals=100, trials=trials)
```
4.输出最佳参数
```python
print(best)
```
生成一个deepspeech的训练代码,能在jupyter notebook中使用
好的,以下是利用DeepSpeech进行训练的代码,可以在Jupyter Notebook中使用:
```python
!pip install deepspeech
import os
import numpy as np
import matplotlib.pyplot as plt
import deepspeech
import scipy.io.wavfile as wav
# 设置模型路径
model_path = "deepspeech-0.9.3-models.pbmm"
# 设置字典路径
alphabet_path = "deepspeech-0.9.3-models.scorer"
# 加载DeepSpeech模型
model = deepspeech.Model(model_path)
# 加载字典
model.enableExternalScorer(alphabet_path)
# 设置一些训练参数
batch_size = 64
n_epochs = 10
learning_rate = 0.0001
dropout_rate = 0.2
# 定义训练函数
def train(model, audio_files, transcripts, batch_size, n_epochs, learning_rate, dropout_rate):
# 将音频文件和对应的文本转换为mfcc特征和标签
def convert_audio_to_features(file_path):
rate, audio = wav.read(file_path)
features = model.sttWithMetadata(audio)
return features[0].mfcc.tolist(), features[0].transcript
# 创建训练集和验证集
n_samples = len(audio_files)
n_train = int(0.8 * n_samples)
indices = np.arange(n_samples)
np.random.shuffle(indices)
train_indices = indices[:n_train]
val_indices = indices[n_train:]
train_features = []
train_labels = []
for i in train_indices:
features, label = convert_audio_to_features(audio_files[i])
train_features.append(features)
train_labels.append(label)
val_features = []
val_labels = []
for i in val_indices:
features, label = convert_audio_to_features(audio_files[i])
val_features.append(features)
val_labels.append(label)
# 定义模型结构
input_shape = train_features[0].shape
n_classes = len(set(train_labels))
model = deepspeech.models.DeepSpeech(input_shape, n_classes, dropout_rate)
# 定义优化器和损失函数
optimizer = deepspeech.optimizers.Adam(learning_rate)
loss_fn = deepspeech.losses.SparseCategoricalCrossentropy(from_logits=True)
# 定义训练和验证函数
@tf.function
def train_step(x, y):
with tf.GradientTape() as tape:
logits = model(x, training=True)
loss = loss_fn(y, logits)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
return loss
@tf.function
def val_step(x, y):
logits = model(x, training=False)
loss = loss_fn(y, logits)
return loss
# 开始训练循环
history = {"train_loss": [], "val_loss": []}
for epoch in range(n_epochs):
train_loss = 0.0
for i in range(0, n_train, batch_size):
x_batch = train_features[i:i+batch_size]
y_batch = train_labels[i:i+batch_size]
x_batch = tf.ragged.constant(x_batch).to_tensor()
y_batch = tf.strings.unicode_split(y_batch, "UTF-8")
y_batch = tf.ragged.constant(y_batch).to_tensor()
train_loss += train_step(x_batch, y_batch)
train_loss /= (n_train / batch_size)
val_loss = 0.0
for i in range(0, len(val_features), batch_size):
x_batch = val_features[i:i+batch_size]
y_batch = val_labels[i:i+batch_size]
x_batch = tf.ragged.constant(x_batch).to_tensor()
y_batch = tf.strings.unicode_split(y_batch, "UTF-8")
y_batch = tf.ragged.constant(y_batch).to_tensor()
val_loss += val_step(x_batch, y_batch)
val_loss /= (len(val_features) / batch_size)
print(f"Epoch {epoch+1}/{n_epochs}: train_loss={train_loss:.4f}, val_loss={val_loss:.4f}")
history["train_loss"].append(train_loss.numpy())
history["val_loss"].append(val_loss.numpy())
return history
# 定义训练数据集和标签
audio_files = ["audio1.wav", "audio2.wav", "audio3.wav"]
transcripts = ["transcript1", "transcript2", "transcript3"]
# 开始训练
history = train(model, audio_files, transcripts, batch_size, n_epochs, learning_rate, dropout_rate)
# 绘制训练和验证损失曲线
plt.plot(history["train_loss"], label="train_loss")
plt.plot(history["val_loss"], label="val_loss")
plt.legend()
plt.show()
```
需要注意的是,此代码中使用了DeepSpeech 0.9.3版本的模型和字典,如果需要使用其他版本的模型和字典,需要相应地更改文件路径。另外,此代码可能需要一些调整才能适配您的数据集和训练需求。
阅读全文