Mapreduce作业运行的代码怎么写,能逐句解释这些代码吗
时间: 2024-04-13 14:29:49 浏览: 98
当你在Hadoop上运行一个MapReduce作业时,你需要编写一个Java程序,并使用Hadoop的API来定义Map和Reduce任务,以及设置作业的配置。下面是一个简单的示例,逐句解释了代码的每个部分:
```java
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
// 定义Mapper类
public class WordCountMapper extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
// 实现map函数
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
String[] words = value.toString().split(" "); // 将输入的文本行按空格切分为单词数组
for (String w : words) {
word.set(w);
context.write(word, one); // 输出<word, 1>键值对
}
}
}
// 定义Reducer类
public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
// 实现reduce函数
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get(); // 对相同单词的计数进行求和
}
result.set(sum);
context.write(key, result); // 输出<word, sum>键值对
}
}
// 主函数
public class WordCount {
public static void main(String[] args) throws Exception {
// 创建一个新的Job对象,并设置Job的名称
Job job = Job.getInstance();
job.setJobName("Word Count");
// 设置Job的输入路径和输出路径
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
// 设置Mapper和Reducer类
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
// 设置Mapper和Reducer的输出键值对类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// 提交作业并等待完成
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
```
以上代码包含三个类:WordCountMapper、WordCountReducer和WordCount。
- WordCountMapper类是一个继承自Mapper类的自定义Mapper类。它实现了map函数,在该函数中对输入的文本进行处理,并输出<word, 1>键值对。
- WordCountReducer类是一个继承自Reducer类的自定义Reducer类。它实现了reduce函数,对相同单词的计数进行求和,并输出<word, sum>键值对。
- WordCount类包含了主函数main,它创建一个新的Job对象,并设置作业的名称、输入路径和输出路径。然后,设置Mapper和Reducer类,以及它们的输出键值对类型。最后,使用job.waitForCompletion方法提交作业并等待完成。
希望这个逐句解释的示例能帮助你理解如何编写和运行MapReduce作业的代码!
阅读全文
相关推荐













