pytorch ssd训练自己的数据集
时间: 2023-10-08 09:08:35 浏览: 413
pytorch训练数据
要在PyTorch SSD中训练自己的数据集,您可以按照以下步骤进行操作:
1. 下载SSD代码和预训练模型:
您可以从GitHub上下载SSD代码,可以使用以下链接进行下载:https://github.com/amdegroot/ssd.pytorch
您还需要下载预训练模型,可以使用以下链接进行下载:https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth
2. 准备您自己的数据集:
确保您的数据集按照SSD代码的要求进行组织。您的数据集应包含图像和相应的标注文件。标注文件应采用特定的格式,例如Pascal VOC或COCO格式。您可以参考SSD代码中提供的示例数据集来了解标注文件的格式。
3. 修改SSD配置文件:
打开SSD代码中的配置文件,通常是ssd/configs/vgg_ssd300.py,根据您的数据集的类别数量和路径等信息进行相应的修改。确保配置文件中的路径与您的数据集路径匹配。
4. 开始训练:
使用命令行运行train.py脚本开始训练。您可以指定一些参数,例如批量大小、学习率、训练轮数等。示例命令如下:
```
python train.py --dataset-type=voc --data-root=/path/to/dataset --basenet=/path/to/pretrained/model/vgg16_reducedfc.pth
```
5.
阅读全文