用python写一个GRU模型pytorch基于minist数据集完成手写字符识别
时间: 2024-05-14 19:16:54 浏览: 114
机器视觉期末作业-基于python实现手写体字符识别+源代码+文档说明+数据集
5星 · 资源好评率100%
好的,我明白了。以下是一个基于 PyTorch 和 MNIST 数据集的手写数字识别 GRU 模型代码示例:
```
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
import torchvision.datasets as datasets
import torchvision.transforms as transforms
class GRUNet(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes):
super(GRUNet, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.gru = nn.GRU(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, num_classes)
def forward(self, x):
h0 = Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_size))
out, _ = self.gru(x, h0)
out = self.fc(out[:, -1, :])
return out
input_size = 28
sequence_length = 28
hidden_size = 128
num_layers = 2
num_classes = 10
train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=100, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=100, shuffle=True)
model = GRUNet(input_size, hidden_size, num_layers, num_classes)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
for epoch in range(5):
for i, (images, labels) in enumerate(train_loader):
images = Variable(images.view(-1, sequence_length, input_size))
labels = Variable(labels)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f'
% (epoch+1, 5, i+1, len(train_dataset)//100, loss.data[0]))
model.eval()
correct = 0
total = 0
for images, labels in test_loader:
images = Variable(images.view(-1, sequence_length, input_size))
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
```
这个 GRU 模型基于输入的 28x28 的图片,以一维序列的形式输入到 GRU 中进行处理。在 GRU 的输出序列中只使用了最后一个时间步的输出来进行分类。在我们的示例中,我们定义了包含两个 GRU 层和一个全连接层的模型。我们使用交叉熵损失函数和 Adam 优化器来训练模型。在训练过程中,我们将模型应用于 MNIST 训练集上的 5 个 epochs,使用批量大小为 100,输出训练损失。在训练完成后,我们将模型应用于 MNIST 测试集上,计算其在测试集上的准确率。
阅读全文