faster rcnn backbone增加注意力机制
时间: 2023-10-01 22:12:08 浏览: 137
在Faster R-CNN中增加注意力机制可以提高模型的性能和准确率。具体来说,可以在Faster R-CNN的backbone中添加注意力机制,以便更好地聚焦于感兴趣的区域,减少不必要的计算量和噪声干扰。
一种常见的注意力机制是Self-Attention,它可以使网络更加关注不同层次上的特征之间的关系。在Faster R-CNN中,可以将Self-Attention添加到backbone的某些层中,以便更好地选择有用的特征和减少噪声。
另一种常见的注意力机制是Spatial Attention,它可以使网络更加关注输入图像中的特定区域。在Faster R-CNN中,可以在backbone的某些层中添加Spatial Attention,以便更好地聚焦于感兴趣的区域。
总之,通过添加注意力机制,可以提高Faster R-CNN的性能和准确率,特别是在处理大规模图像数据时。
相关问题
基于注意力机制的目标检测代码
基于注意力机制的目标检测算法有很多,这里提供一种基于注意力机制的 Faster R-CNN 的代码实现。Faster R-CNN 是一种两阶段目标检测算法,其基本思路是通过区域提取网络 (Region Proposal Network, RPN) 提取出可能包含目标的区域,再通过一个分类和回归网络对这些区域进行分类和定位。
以下是一个基于 Pytorch 的 Faster R-CNN 代码实现,其中使用了注意力机制来改善分类和回归的准确性:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class Attention(nn.Module):
def __init__(self, in_channels):
super(Attention, self).__init__()
self.conv1 = nn.Conv2d(in_channels, in_channels // 8, kernel_size=1)
self.conv2 = nn.Conv2d(in_channels // 8, in_channels, kernel_size=1)
self.pool = nn.AdaptiveAvgPool2d(1)
self.fc1 = nn.Linear(in_channels, in_channels // 8)
self.fc2 = nn.Linear(in_channels // 8, in_channels)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
y = self.conv1(x)
y = F.relu(y)
y = self.conv2(y)
y = self.sigmoid(y)
y = x * y
y = self.pool(y)
y = y.view(y.size(0), -1)
y = self.fc1(y)
y = F.relu(y)
y = self.fc2(y)
y = self.sigmoid(y)
y = y.view(y.size(0), y.size(1), 1, 1)
return x * y
class FasterRCNN(nn.Module):
def __init__(self, num_classes):
super(FasterRCNN, self).__init__()
self.backbone = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
)
self.rpn = nn.Sequential(
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=1, stride=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 18, kernel_size=1, stride=1),
)
self.roi_pool = nn.AdaptiveMaxPool2d((7, 7))
self.fc1 = nn.Linear(7 * 7 * 512, 4096)
self.fc2 = nn.Linear(4096, 4096)
self.cls_score = nn.Linear(4096, num_classes)
self.bbox_pred = nn.Linear(4096, num_classes * 4)
self.attention = Attention(512)
def forward(self, x):
x = self.backbone(x)
attention = self.attention(x)
rpn = self.rpn(attention)
rpn_probs = F.softmax(rpn[:, :9, :, :], dim=1)
rpn_deltas = rpn[:, 9:, :, :]
rois = self.generate_rois(rpn_probs, rpn_deltas)
roi_features = self.roi_pool(attention, rois)
roi_features = roi_features.view(roi_features.size(0), -1)
fc1 = F.relu(self.fc1(roi_features))
fc2 = F.relu(self.fc2(fc1))
cls_score = self.cls_score(fc2)
bbox_pred = self.bbox_pred(fc2)
return cls_score, bbox_pred
def generate_rois(self, rpn_probs, rpn_deltas):
_, _, H, W = rpn_probs.shape
A = self.anchor_box(H, W)
A = A.to(rpn_probs.device)
rpn_probs = rpn_probs.detach().cpu().numpy()
rpn_deltas = rpn_deltas.detach().cpu().numpy()
rois = []
for i in range(H):
for j in range(W):
for k in range(9):
if rpn_probs[0, k, i, j] > 0.5:
dy, dx, dh, dw = rpn_deltas[0, :, i, j]
center_y = i * 16 + A[k, 0] * 16
center_x = j * 16 + A[k, 1] * 16
h = A[k, 2] * np.exp(dh)
w = A[k, 3] * np.exp(dw)
y1 = center_y - h / 2
x1 = center_x - w / 2
y2 = center_y + h / 2
x2 = center_x + w / 2
rois.append([0, y1, x1, y2, x2])
rois = torch.tensor(rois).float()
return rois
def anchor_box(self, H, W):
scales = [8, 16, 32]
ratios = [0.5, 1, 2]
base_anchor = np.array([1, 1, 16, 16]) - 1
anchors = self.generate_anchors(base_anchor, scales, ratios)
shift_y = np.arange(0, H) * 16
shift_x = np.arange(0, W) * 16
shift_x, shift_y = np.meshgrid(shift_x, shift_y)
shift = np.stack([shift_y.ravel(), shift_x.ravel(),
shift_y.ravel(), shift_x.ravel()], axis=1)
A = anchors.shape[0]
K = shift.shape[0]
all_anchors = (anchors.reshape((1, A, 4)) +
shift.reshape((1, K, 4)).transpose((1, 0, 2)))
all_anchors = all_anchors.reshape((A * K, 4))
return all_anchors
def generate_anchors(self, base_anchor, scales, ratios):
h, w, cy, cx = self.anchor_geometry(base_anchor)
scales_grid, ratios_grid = np.meshgrid(scales, ratios)
scales_grid = scales_grid.reshape(-1)
ratios_grid = ratios_grid.reshape(-1)
h_grid = h.reshape((1, -1)) * np.sqrt(ratios_grid).reshape((-1, 1)) * scales_grid.reshape((-1, 1))
w_grid = w.reshape((1, -1)) / np.sqrt(ratios_grid).reshape((-1, 1)) * scales_grid.reshape((-1, 1))
cy_grid = np.repeat(cy.reshape((1, -1)), len(scales) * len(ratios), axis=0).reshape(-1)
cx_grid = np.repeat(cx.reshape((1, -1)), len(scales) * len(ratios), axis=0).reshape(-1)
anchors = np.stack([cy_grid, cx_grid, h_grid, w_grid], axis=1)
return anchors
def anchor_geometry(self, base_anchor):
h, w, cy, cx = base_anchor
return (np.array([h, w, h, w]), np.array([w, h, w, h]), np.array([cy, cy, cy, cy]), np.array([cx, cx, cx, cx]))
```
上面的代码中,`Attention` 类定义了注意力模块,`FasterRCNN` 类定义了整个 Faster R-CNN 网络。在 `forward` 方法中,先将输入图像经过卷积网络得到特征图,然后使用注意力模块对特征图进行加权,然后将加权后的特征图输入到区域提取网络(`rpn`)中,得到可能包含目标的候选框(`rois`),再将这些候选框输入到分类和回归网络中,得到最终的分类和定位结果。在 `generate_rois` 方法中,使用 RPN 网络输出的概率和边框偏移量生成候选框。
阅读全文