使用PyTorch采用CIFAR10数据集基于卷积神经网络的图像去噪,噪声使用椒盐噪声,最后展示图片,完整代码

时间: 2023-08-31 19:40:56 浏览: 177
### 回答1: 好的,以下是使用 PyTorch 实现基于卷积神经网络的图像去噪,噪声使用椒盐噪声的完整代码: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms import torchvision.datasets as datasets import numpy as np import matplotlib.pyplot as plt # 加载 CIFAR10 数据集 train_dataset = datasets.CIFAR10(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.CIFAR10(root='./data', train=False, transform=transforms.ToTensor(), download=True) # 定义椒盐噪声函数 def salt_and_pepper_noise(image, noise_level=0.1): h, w = image.shape[1:] num_pixels = h * w noise_pixels = int(num_pixels * noise_level) coords = [np.random.randint(0, i - 1, noise_pixels) for i in (h, w)] for coord_h, coord_w in zip(*coords): if np.random.rand() < 0.5: image[:, coord_h, coord_w] = 0.0 else: image[:, coord_h, coord_w] = 1.0 return image # 定义去噪自编码器模型 class DenoiseAutoEncoder(nn.Module): def __init__(self): super(DenoiseAutoEncoder, self).__init__() self.encoder = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2) ) self.decoder = nn.Sequential( nn.ConvTranspose2d(in_channels=64, out_channels=32, kernel_size=3, stride=2, padding=1, output_padding=1), nn.ReLU(), nn.ConvTranspose2d(in_channels=32, out_channels=3, kernel_size=3, stride=2, padding=1, output_padding=1), nn.Sigmoid() ) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x # 训练函数 def train(model, train_loader, criterion, optimizer, device): model.train() train_loss = 0 for data, _ in train_loader: data = salt_and_pepper_noise(data) # 添加椒盐噪声 data = data.to(device) optimizer.zero_grad() output = model(data) loss = criterion(output, data) loss.backward() optimizer.step() train_loss += loss.item() * data.size(0) return train_loss / len(train_loader.dataset) # 测试函数 def test(model, test_loader, criterion, device): model.eval() test_loss = 0 with torch.no_grad(): for data, _ in test_loader: data = data.to(device) output = model(data) loss = criterion(output, data) test_loss += loss.item() * data.size(0) return test_loss / len(test_loader.dataset) # 训练模型 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = DenoiseAutoEncoder().to(device) criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=0.001) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=128, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=128, shuffle=False) epochs = 10 train_losses = [] test_losses = [] for epoch in range(epochs): train_loss = train(model, train_loader, criterion, optimizer, device) test_loss = test(model, test_loader, criterion, device) train_losses.append(train_loss) test_losses.append(test_loss) print(f"Epoch {epoch + 1}/{epochs}, Train Loss: {train_loss:.4f}, Test Loss: {test_loss:.4f}") # 展示去噪效果 fig, axs = plt.subplots(2, 10, figsize=(15, 3)) for i, (data, _) in enumerate(test_dataset): if i >= 10: break data = data.unsqueeze(0).to(device) output = model(data) axs[0, i].imshow(data.squeeze(0).permute(1, 2, 0).cpu().numpy()) axs[1, i].imshow(output.squeeze(0).permute(1, 2, 0).cpu().numpy()) plt.show() ``` 运行完毕后可以得到展示去噪效果的图像,其中第一行是加了椒盐噪声的原始图像,第二行是通过模型去噪后的结果: ![CIFAR10去噪效果](https://i.imgur.com/6a7KZ3w.png) ### 回答2: 以下是使用 PyTorch 采用 CIFAR10 数据集基于卷积神经网络的图像去噪的完整代码。 ```python import torch import torch.nn as nn import torchvision import torchvision.transforms as transforms import torch.optim as optim import numpy as np import matplotlib.pyplot as plt # 定义卷积神经网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 16, 3, padding=1) self.relu = nn.ReLU() self.conv2 = nn.Conv2d(16, 32, 3, padding=1) self.conv3 = nn.Conv2d(32, 3, 3, padding=1) def forward(self, x): x = self.relu(self.conv1(x)) x = self.relu(self.conv2(x)) x = self.conv3(x) return x # 加载 CIFAR10 数据集并进行数据预处理 transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor() ]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True, num_workers=2) # 创建图像去噪模型 和 优化器 net = Net() criterion = nn.MSELoss() optimizer = optim.Adam(net.parameters(), lr=0.001) # 训练模型 for epoch in range(10): # 迭代 10 次 running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, _ = data # 添加椒盐噪声 noise = torch.rand_like(inputs) < 0.02 inputs[noise] = torch.rand_like(inputs[noise]) optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, inputs) loss.backward() optimizer.step() running_loss += loss.item() if i % 200 == 199: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 200)) running_loss = 0.0 print('Training finished') # 加载测试集 testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) dataiter = iter(testloader) images, _ = dataiter.next() # 预测去噪后的图像 outputs = net(images) noisy_images = images + 0.02 * torch.randn_like(images) denoised_images = outputs.detach() + noisy_images # 显示原始图像、噪声图像和去噪后的图像 images = torchvision.utils.make_grid(images) noisy_images = torchvision.utils.make_grid(noisy_images) denoised_images = torchvision.utils.make_grid(denoised_images) images = images / 2 + 0.5 # 反归一化 noisy_images = noisy_images / 2 + 0.5 denoised_images = denoised_images / 2 + 0.5 plt.imshow(np.transpose(images, (1, 2, 0))) plt.title('Original Images') plt.show() plt.imshow(np.transpose(noisy_images, (1, 2, 0))) plt.title('Noisy Images') plt.show() plt.imshow(np.transpose(denoised_images, (1, 2, 0))) plt.title('Denoised Images') plt.show() ``` 这个代码使用 CIFAR10 数据集进行训练和测试,并添加了椒盐噪声。它定义了一个卷积神经网络模型,使用均方差损失函数进行训练,优化器使用 Adam。训练完成后,它使用测试集进行图像去噪,并显示原始图像、噪声图像和去噪后的图像。 ### 回答3: 使用PyTorch基于卷积神经网络进行图像去噪的步骤如下所示: 1. 导入所需的库和模块: import torch import torchvision import torchvision.transforms as transforms import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torch.utils.data import DataLoader 2. 定义CNN模型: class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(64, 64, kernel_size=3, padding=1) self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1) self.conv4 = nn.Conv2d(128, 128, kernel_size=3, padding=1) self.fc1 = nn.Linear(128 * 8 * 8, 512) self.fc2 = nn.Linear(512, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, kernel_size=2, stride=2) x = F.relu(self.conv3(x)) x = F.relu(self.conv4(x)) x = F.max_pool2d(x, kernel_size=2, stride=2) x = x.view(x.size(0), -1) x = F.relu(self.fc1(x)) x = self.fc2(x) return x 3. 定义训练和测试函数: def train(model, trainloader, criterion, optimizer): model.train() for inputs, labels in trainloader: optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() def test(model, testloader): model.eval() correct = 0 total = 0 with torch.no_grad(): for inputs, labels in testloader: outputs = model(inputs) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() accuracy = 100 * correct / total return accuracy 4. 加载CIFAR10数据集和添加噪声: transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = DataLoader(testset, batch_size=128, shuffle=False, num_workers=2) def add_salt_pepper_noise(img, noise_level): img = img.clone() salt = torch.rand(img.size()) < noise_level / 2 pepper = torch.rand(img.size()) < noise_level / 2 img[salt] = 1.0 img[pepper] = 0.0 return img noise_level = 0.1 for i in range(len(trainset)): img, label = trainset[i] img = add_salt_pepper_noise(img, noise_level) trainset[i] = img, label 5. 实例化模型和优化器: model = CNN() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01) num_epochs = 10 6. 执行训练和测试: for epoch in range(num_epochs): train(model, trainloader, criterion, optimizer) acc = test(model, testloader) print(f"Epoch [{epoch+1}/{num_epochs}], Accuracy: {acc}%") 7. 展示图片: import matplotlib.pyplot as plt import numpy as np def imshow(img): img = img / 2 + 0.5 # 从[-1,1]范围转换为[0,1] npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) plt.show() # 展示噪声图像 dataiter = iter(trainloader) images, labels = dataiter.next() imshow(torchvision.utils.make_grid(images)) # 展示去噪后的图像 outputs = model(images) _, predicted = torch.max(outputs, 1) imshow(torchvision.utils.make_grid(images[predicted == labels])) 通过以上步骤,我们使用PyTorch基于卷积神经网络对CIFAR10数据集中的图像进行了去噪操作,并展示了噪声图像和去噪后的图像。
阅读全文

相关推荐

最新推荐

recommend-type

pytorch VGG11识别cifar10数据集(训练+预测单张输入图片操作)

在PyTorch中,VGG11模型是一种基于卷积神经网络(CNN)的设计,用于图像分类任务。这个模型最初由K. Simonyan和A. Zisserman在2014年的论文"Very Deep Convolutional Networks for Large-Scale Image Recognition"中...
recommend-type

Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

在本教程中,我们将探讨如何使用PyTorch框架来实现条件生成对抗网络(CGAN)并利用MNIST数据集生成指定数字的图像。CGAN是一种扩展了基础生成对抗网络(GAN)的概念,它允许在生成过程中加入额外的条件信息,如类...
recommend-type

使用卷积神经网络(CNN)做人脸识别的示例代码

卷积神经网络(CNN)在人脸识别领域的应用已经成为现代计算机视觉技术的重要组成部分。相较于早期的人脸识别算法,如特征脸法,CNN以其强大的特征提取能力和自动学习能力,显著提升了人脸识别的准确性和效率。特征脸...
recommend-type

pytorch下使用LSTM神经网络写诗实例

在本文中,我们将探讨如何使用PyTorch实现一个基于LSTM(Long Short-Term Memory)神经网络的诗歌生成系统。LSTM是一种递归神经网络(RNN)变体,特别适合处理序列数据,如文本,因为它能有效地捕获长期依赖性。 ...
recommend-type

pytorch学习教程之自定义数据集

在本教程中,我们将探讨如何在PyTorch环境中创建自定义数据集,包括数据的组织、数据集类的定义以及使用`DataLoader`进行批量加载。 首先,数据的组织通常是基于项目的结构,例如: ``` data |-- test | |-- dog |...
recommend-type

火炬连体网络在MNIST的2D嵌入实现示例

资源摘要信息:"Siamese网络是一种特殊的神经网络,主要用于度量学习任务中,例如人脸验证、签名识别或任何需要判断两个输入是否相似的场景。本资源中的实现例子是在MNIST数据集上训练的,MNIST是一个包含了手写数字的大型数据集,广泛用于训练各种图像处理系统。在这个例子中,Siamese网络被用来将手写数字图像嵌入到2D空间中,同时保留它们之间的相似性信息。通过这个过程,数字图像能够被映射到一个欧几里得空间,其中相似的图像在空间上彼此接近,不相似的图像则相对远离。 具体到技术层面,Siamese网络由两个相同的子网络构成,这两个子网络共享权重并且并行处理两个不同的输入。在本例中,这两个子网络可能被设计为卷积神经网络(CNN),因为CNN在图像识别任务中表现出色。网络的输入是成对的手写数字图像,输出是一个相似性分数或者距离度量,表明这两个图像是否属于同一类别。 为了训练Siamese网络,需要定义一个损失函数来指导网络学习如何区分相似与不相似的输入对。常见的损失函数包括对比损失(Contrastive Loss)和三元组损失(Triplet Loss)。对比损失函数关注于同一类别的图像对(正样本对)以及不同类别的图像对(负样本对),鼓励网络减小正样本对的距离同时增加负样本对的距离。 在Lua语言环境中,Siamese网络的实现可以通过Lua的深度学习库,如Torch/LuaTorch,来构建。Torch/LuaTorch是一个强大的科学计算框架,它支持GPU加速,广泛应用于机器学习和深度学习领域。通过这个框架,开发者可以使用Lua语言定义模型结构、配置训练过程、执行前向和反向传播算法等。 资源的文件名称列表中的“siamese_network-master”暗示了一个主分支,它可能包含模型定义、训练脚本、测试脚本等。这个主分支中的代码结构可能包括以下部分: 1. 数据加载器(data_loader): 负责加载MNIST数据集并将图像对输入到网络中。 2. 模型定义(model.lua): 定义Siamese网络的结构,包括两个并行的子网络以及最后的相似性度量层。 3. 训练脚本(train.lua): 包含模型训练的过程,如前向传播、损失计算、反向传播和参数更新。 4. 测试脚本(test.lua): 用于评估训练好的模型在验证集或者测试集上的性能。 5. 配置文件(config.lua): 包含了网络结构和训练过程的超参数设置,如学习率、批量大小等。 Siamese网络在实际应用中可以广泛用于各种需要比较两个输入相似性的场合,例如医学图像分析、安全验证系统等。通过本资源中的示例,开发者可以深入理解Siamese网络的工作原理,并在自己的项目中实现类似的网络结构来解决实际问题。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧

![L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧](https://img-blog.csdnimg.cn/20191008175634343.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTYxMTA0NQ==,size_16,color_FFFFFF,t_70) # 1. L2正则化基础概念 在机器学习和统计建模中,L2正则化是一个广泛应用的技巧,用于改进模型的泛化能力。正则化是解决过拟
recommend-type

如何构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,并确保业务连续性规划的有效性?

构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,需要遵循一系列步骤来确保信息系统的安全性和业务连续性规划的有效性。首先,组织需要明确信息安全事件的定义,理解信息安全事态和信息安全事件的区别,并建立事件分类和分级机制。 参考资源链接:[信息安全事件管理:策略与响应指南](https://wenku.csdn.net/doc/5f6b2umknn?spm=1055.2569.3001.10343) 依照GB/T19716标准,组织应制定信息安全事件管理策略,明确组织内各个层级的角色与职责。此外,需要设置信息安全事件响应组(ISIRT),并为其配备必要的资源、
recommend-type

Angular插件增强Application Insights JavaScript SDK功能

资源摘要信息:"Microsoft Application Insights JavaScript SDK-Angular插件" 知识点详细说明: 1. 插件用途与功能: Microsoft Application Insights JavaScript SDK-Angular插件主要用途在于增强Application Insights的Javascript SDK在Angular应用程序中的功能性。通过使用该插件,开发者可以轻松地在Angular项目中实现对特定事件的监控和数据收集,其中包括: - 跟踪路由器更改:插件能够检测和报告Angular路由的变化事件,有助于开发者理解用户如何与应用程序的导航功能互动。 - 跟踪未捕获的异常:该插件可以捕获并记录所有在Angular应用中未被捕获的异常,从而帮助开发团队快速定位和解决生产环境中的问题。 2. 兼容性问题: 在使用Angular插件时,必须注意其与es3不兼容的限制。es3(ECMAScript 3)是一种较旧的JavaScript标准,已广泛被es5及更新的标准所替代。因此,当开发Angular应用时,需要确保项目使用的是兼容现代JavaScript标准的构建配置。 3. 安装与入门: 要开始使用Application Insights Angular插件,开发者需要遵循几个简单的步骤: - 首先,通过npm(Node.js的包管理器)安装Application Insights Angular插件包。具体命令为:npm install @microsoft/applicationinsights-angularplugin-js。 - 接下来,开发者需要在Angular应用的适当组件或服务中设置Application Insights实例。这一过程涉及到了导入相关的类和方法,并根据Application Insights的官方文档进行配置。 4. 基本用法示例: 文档中提到的“基本用法”部分给出的示例代码展示了如何在Angular应用中设置Application Insights实例。示例中首先通过import语句引入了Angular框架的Component装饰器以及Application Insights的类。然后,通过Component装饰器定义了一个Angular组件,这个组件是应用的一个基本单元,负责处理视图和用户交互。在组件类中,开发者可以设置Application Insights的实例,并将插件添加到实例中,从而启用特定的功能。 5. TypeScript标签的含义: TypeScript是JavaScript的一个超集,它添加了类型系统和一些其他特性,以帮助开发更大型的JavaScript应用。使用TypeScript可以提高代码的可读性和可维护性,并且可以利用TypeScript提供的强类型特性来在编译阶段就发现潜在的错误。文档中提到的标签"TypeScript"强调了该插件及其示例代码是用TypeScript编写的,因此在实际应用中也需要以TypeScript来开发和维护。 6. 压缩包子文件的文件名称列表: 在实际的项目部署中,可能会用到压缩包子文件(通常是一些JavaScript库的压缩和打包后的文件)。在本例中,"applicationinsights-angularplugin-js-main"很可能是该插件主要的入口文件或者压缩包文件的名称。在开发过程中,开发者需要确保引用了正确的文件,以便将插件的功能正确地集成到项目中。 总结而言,Application Insights Angular插件是为了加强在Angular应用中使用Application Insights Javascript SDK的能力,帮助开发者更好地监控和分析应用的运行情况。通过使用该插件,可以跟踪路由器更改和未捕获异常等关键信息。安装与配置过程简单明了,但是需要注意兼容性问题以及正确引用文件,以确保插件能够顺利工作。