雷达目标跟踪matlab代码
时间: 2023-09-18 22:11:41 浏览: 289
以下是一个简单的基于卡尔曼滤波器的雷达目标跟踪Matlab代码示例:
```matlab
% 初始化雷达参数
range = 2000; % 范围
velocity = 100; % 初始速度
angle = 30; % 初始角度
sigmaR = 5; % 范围噪声标准差
sigmaV = 2; % 速度噪声标准差
sigmaA = 0.5; % 角度噪声标准差
% 定义初始状态向量
x = [range*cosd(angle); range*sind(angle); velocity*cosd(angle); velocity*sind(angle)];
% 定义初始协方差矩阵
P = diag([sigmaR^2, sigmaR^2, sigmaV^2, sigmaV^2]);
% 定义状态转移矩阵
A = [1 0 1 0; 0 1 0 1; 0 0 1 0; 0 0 0 1];
% 定义测量矩阵
H = [1 0 0 0; 0 1 0 0];
% 定义测量噪声协方差矩阵
R = diag([sigmaR^2, sigmaR^2]);
% 定义过程噪声协方差矩阵
Q = diag([sigmaR^2, sigmaR^2, sigmaV^2, sigmaV^2]);
% 定义观测值
z = [range*cosd(angle+5); range*sind(angle+5)] + randn(2,1)*sigmaR;
% 初始化卡尔曼滤波器
x_est = x;
P_est = P;
% 进行滤波
for i=1:100
% 预测
x_pred = A*x_est;
P_pred = A*P_est*A' + Q;
% 更新
K = P_pred*H'*inv(H*P_pred*H'+R);
x_est = x_pred + K*(z - H*x_pred);
P_est = (eye(4) - K*H)*P_pred;
% 生成新的观测值
z = [range*cosd(angle+5*i); range*sind(angle+5*i)] + randn(2,1)*sigmaR;
% 绘制结果
plot(x_est(1), x_est(2), 'ro');
hold on;
plot(z(1), z(2), 'bx');
axis([-2500 2500 -2500 2500]);
hold off;
drawnow;
end
```
该代码假设雷达跟踪的目标沿着固定方向直线运动,因此只需要跟踪目标的距离、角度和速度。代码中使用了卡尔曼滤波器来估计目标状态,并在每个时间步骤更新观测值和滤波器状态。最终结果通过绘制目标位置和观测位置的图形来展示。
阅读全文