我的代码#include <stdio.h> #include <iostream> #include <opencv2/opencv.hpp> //opencl #include <opencv2/core/ocl.hpp> using namespace std; using namespace cv; int main(int argc, char **argv) { ocl::setUseOpenCL(true); UMat img; imread("../lena.jpg").copyTo(img); UMat frameGray; int64 start=0,end=0; start = getTickCount(); cvtColor(img, frameGray, COLOR_BGR2GRAY); GaussianBlur(frameGray,frameGray , Size(3,3), 0,0); end = getTickCount(); printf("time: %f ms\n", 1000.0*(end - start)/getTickFrequency()); return 0; }
时间: 2024-04-26 14:22:27 浏览: 109
C代码教程1显示#include <stdio.
这段代码使用了 OpenCV 的 ocl 模块,启用了 OpenCL 加速。在运行之前需要确保你的系统已经安装好了 OpenCL 的驱动程序和运行时环境,并且支持你的硬件设备。如果你不确定是否已经安装好了 OpenCL,可以查看 OpenCL 的官方网站,或者查看你的硬件和操作系统的支持情况。
在代码中,首先调用了 `ocl::setUseOpenCL(true)`,启用了 OpenCL 加速。然后读取了一张图像并将其拷贝到 UMat 对象 `img` 中。接着创建了一个 UMat 对象 `frameGray`,用于存储将彩色图像转换为灰度图像后的结果。
在计算过程中,使用了 cvtColor 函数将彩色图像转换为灰度图像,然后使用 GaussianBlur 函数对灰度图像进行高斯模糊处理。最后计算了转换和处理的时间,并打印出来。
需要注意的是,OpenCL 加速不一定能够提升程序的运行速度,具体效果取决于硬件设备和算法实现。在一些情况下,使用 OpenCL 可能会比 CPU 程序运行更慢。因此在实际应用中需要根据具体情况进行选择。
阅读全文