criterion = nn.MSELoss() optimizer = optim.ASGD(model.parameters(), lr=0.01)给我这两个函数的运作示意图或其他图表类型的东西
时间: 2024-04-01 13:37:35 浏览: 126
下面是criterion = nn.MSELoss() 和 optimizer = optim.ASGD(model.parameters(), lr=0.01)的运作示意图:
![MSELoss](https://img-blog.csdn.net/20180527130508553?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3R1cG9uLWxh/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70)
MSELoss是均方误差损失函数,它计算输入和目标之间的均方误差。在训练神经网络时,我们需要计算网络预测结果与真实结果之间的误差,然后将这个误差反向传播,更新网络参数,使得预测结果更接近真实结果。
ASGD是平均随机梯度下降算法,它是一种优化算法,用于在训练神经网络时更新模型参数。在ASGD中,每次迭代时,会从训练数据中随机抽取一批样本,计算这批样本的梯度,并根据这个梯度更新模型参数。ASGD还会维护一份参数的平均值,可以在训练过程中减少参数的震荡,提高模型的稳定性。
相关问题
# 构建卷积神经网络结构 # 当前版本为卷积核大小5 * 5的版本 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(5, 16, 3, padding='same') self.bn1 = nn.BatchNorm2d(16) self.conv2 = nn.Conv2d(16, 16, 3, padding=1) self.bn2 = nn.BatchNorm2d(16) self.conv3 = nn.Conv2d(16, 32, 3, padding=1) self.bn3 = nn.BatchNorm2d(32) self.conv4 = nn.Conv2d(32, 64, 3, padding=1) self.bn4 = nn.BatchNorm2d(64) self.conv5 = nn.Conv2d(64, 128, 3, padding=1) self.bn5 = nn.BatchNorm2d(128) self.conv6 = nn.Conv2d(128, 128, 3, padding=1) self.bn6 = nn.BatchNorm2d(128) self.conv_t6 = nn.ConvTranspose2d(128, 64, 3, padding=1) self.bn_t6 = nn.BatchNorm2d(64) self.conv_t5 = nn.ConvTranspose2d(64, 32, 3, padding=1) self.bn_t5 = nn.BatchNorm2d(32) self.conv_t4 = nn.ConvTranspose2d(32, 16, 3, padding=1) self.bn_t4 = nn.BatchNorm2d(16) self.conv_t3 = nn.ConvTranspose2d(16, 16, 3, padding=1) self.bn_t3 = nn.BatchNorm2d(16) self.conv_t2 = nn.ConvTranspose2d(16, 8, 3, padding=1) self.bn_t2 = nn.BatchNorm2d(8) self.conv_1 = nn.Conv2d(8, 2, 3, padding='same') self.bn_1 = nn.BatchNorm2d(2) self.tan_h = nn.Tanh() def forward(self, x): x1 = self.tan_h(self.bn1(self.conv1(x))) x2 = self.tan_h(self.bn2(self.conv2(x1)))**2 x3 = self.tan_h(self.bn3(self.conv3(x2)))**2 x4 = self.tan_h(self.bn4(self.conv4(x3)))**2 x5 = self.tan_h(self.bn5(self.conv5(x4)))**2 x6 = self.tan_h(self.bn6(self.conv6(x5)))**2 x_t6 = self.tan_h(self.bn_t6(self.conv_t6(x6)))**2 x_t5 = self.tan_h(self.bn_t5(self.conv_t5(x_t6)))**2 x_t4 = self.tan_h(self.bn_t4(self.conv_t4(x_t5)))**2 x_t3 = self.tan_h(self.bn_t3(self.conv_t3(x_t4))) ** 2 x_t2 = self.tan_h(self.bn_t2(self.conv_t2(x_t3))) ** 2 x_1 = self.tan_h(self.bn_1(self.conv_1(x_t2))) return x_1 # 读取模型 需要提前定义对应的类 model = torch.load("model1.pt") # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = optim.ASGD(model.parameters(), lr=0.01) 详细说明该神经网络的结构,功能以及为什么要选择这个
该神经网络的结构是一个基于卷积神经网络的自编码器,由卷积层和反卷积层构成。自编码器可以将输入数据进行压缩编码,然后再解码还原成原始数据。
该神经网络的输入数据是一个5通道的图像,经过6个卷积层和6个反卷积层的处理,最终输出一个2通道的图像。其中,卷积核大小为5 * 5,使用了批归一化和Tanh激活函数,反卷积核大小也为3 * 3,使用了ASGD优化器和MSELoss损失函数。
选择该神经网络的原因是,它可以对图像数据进行有效的压缩和还原,同时能够保留原始数据的重要特征,适用于图像处理领域。而且,卷积神经网络在图像处理方面表现出色,具有较高的准确性和鲁棒性。
阅读全文