python中AUC曲线处理多分类问题画图代码标准示例
时间: 2024-05-02 20:23:53 浏览: 73
以下是一个处理多分类问题的AUC曲线的标准示例代码:
```python
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt
# y_test是测试集的真实标签,y_score是测试集预测结果的概率
fpr = dict()
tpr = dict()
roc_auc = dict()
n_classes = len(set(y_test))
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
# Compute micro-average ROC curve and ROC area
fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
plt.figure()
lw = 2
colors = ['red', 'blue', 'green', 'orange', 'purple', 'pink']
for i, color in zip(range(n_classes), colors):
plt.plot(fpr[i], tpr[i], color=color, lw=lw,
label='ROC curve of class {0} (area = {1:0.2f})'
''.format(i, roc_auc[i]))
plt.plot(fpr["micro"], tpr["micro"],
label='micro-average ROC curve (area = {0:0.2f})'
''.format(roc_auc["micro"]),
color='deeppink', linestyle=':', linewidth=4)
plt.plot([0, 1], [0, 1], 'k--', lw=lw)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.show()
```
在这个示例中,我们使用了`sklearn.metrics`库中的`roc_curve`和`auc`函数来计算每个类别的ROC曲线和AUC值。然后,我们通过matplotlib库将每个类别的ROC曲线绘制出来,并在图例中显示该类别的AUC值。此外,我们还计算了micro-average ROC曲线和AUC值,并将其绘制在图中。
阅读全文