人工鱼群算法matlab带容量限制的路径优化问题代码
时间: 2023-11-07 09:00:26 浏览: 69
以下是使用人工鱼群算法解决带容量限制的路径优化问题的MATLAB代码示例:
```
clc;
clear all;
close all;
%% 初始化数据
n = 50; % 鱼群大小
dim = 30; % 解的维度
max_iter = 100; % 最大迭代次数
w = 0.6; % 惯性权重
c1 = 1.5; % 个体学习因子
c2 = 1.5; % 社会学习因子
L = 5; % 邻域大小
step = 0.1; % 步长
capacity = 50; % 容量限制
demand = [10 20 30 5 15 25 20 10 5 10]; % 每个节点的需求量
location = rand(dim,length(demand)); % 节点位置
population = rand(dim,n,length(demand)); % 鱼群位置
velocity = rand(dim,n,length(demand)); % 鱼群速度
fitness = zeros(n,1); % 适应度值
best_fitness = inf; % 最佳适应度值
best_solution = zeros(dim,length(demand)); % 最佳解
capacity_left = capacity * ones(1,length(demand)); % 剩余容量
%% 迭代
for iter = 1:max_iter
for i = 1:n
% 更新鱼群位置和速度
[population(:,i,:), velocity(:,i,:)] = updateFish(population(:,i,:), velocity(:,i,:), w, c1, c2, L, step, best_solution, demand, location, capacity_left);
% 计算适应度值
fitness(i) = evaluate(population(:,i,:), demand, location);
% 更新最佳解
if fitness(i) < best_fitness
best_fitness = fitness(i);
best_solution = population(:,i,:);
end
end
% 输出结果
disp(['Iteration ', num2str(iter), ': Best fitness = ', num2str(best_fitness)]);
end
%% 函数定义
function [new_population, new_velocity] = updateFish(population, velocity, w, c1, c2, L, step, best_solution, demand, location, capacity_left)
[dim, num_nodes] = size(population);
new_population = population;
new_velocity = velocity;
% 计算适应度值和排序
fitness = evaluate(new_population, demand, location);
[fitness, idx] = sort(fitness);
% 更新鱼群位置和速度
for i = 1:num_nodes
% 个体学习
move1 = c1 * rand(dim,1) .* (new_population(:,i) - population(:,i));
% 社会学习
move2 = c2 * rand(dim,1) .* (best_solution(:,i) - population(:,i));
% 鱼群运动
new_velocity(:,i) = w * velocity(:,i) + move1 + move2;
% 限制速度
new_velocity(:,i) = min(new_velocity(:,i), step);
new_velocity(:,i) = max(new_velocity(:,i), -step);
% 更新位置
new_population(:,i) = new_population(:,i) + new_velocity(:,i);
% 限制位置
new_population(:,i) = min(new_population(:,i), 1);
new_population(:,i) = max(new_population(:,i), 0);
% 邻域搜索
for j = 1:L
% 随机选择邻居
idx_neighbor = randi([1,num_nodes]);
while idx_neighbor == i
idx_neighbor = randi([1,num_nodes]);
end
% 判断是否更新位置
if fitness(i) < fitness(idx_neighbor)
% 计算位置差
diff = new_population(:,idx_neighbor) - new_population(:,i);
% 计算距离
distance = norm(diff);
if distance < step
% 更新位置
new_population(:,i) = new_population(:,i) + diff;
% 限制位置
new_population(:,i) = min(new_population(:,i), 1);
new_population(:,i) = max(new_population(:,i), 0);
end
end
end
% 判断容量限制
for k = 1:length(demand)
% 计算已使用容量
used_capacity = sum(demand(1:k-1)) + sum(demand(k:i));
if used_capacity > capacity_left(k)
% 超出容量限制,回退到上一个节点
new_population(:,i,k:end) = population(:,i,k:end);
new_velocity(:,i,k:end) = -velocity(:,i,k:end);
break;
end
end
% 更新剩余容量
for k = 1:length(demand)
capacity_left(k) = max(0, capacity_left(k) - demand(k));
end
end
end
function fitness = evaluate(population, demand, location)
[dim, num_nodes, num_demands] = size(population);
fitness = zeros(num_nodes,1);
for i = 1:num_nodes
path = zeros(1,num_demands);
for j = 1:num_demands
% 寻找最近的节点
diff = location(:,j) - population(:,i,j);
distance = norm(diff);
for k = 1:num_nodes
diff = location(:,j) - population(:,k,j);
if norm(diff) < distance
distance = norm(diff);
path(j) = k;
end
end
end
% 计算路径长度
distance = 0;
for j = 1:num_demands-1
diff = population(:,path(j+1),j) - population(:,path(j),j);
distance = distance + norm(diff);
end
% 计算适应度值
fitness(i) = distance;
end
end
```
代码中使用了三个函数:
- `updateFish`:更新鱼群位置和速度,实现了个体学习、社会学习和邻域搜索,同时考虑了容量限制。
- `evaluate`:计算鱼群的适应度值,即每个鱼群的路径长度。
- 主函数:初始化数据,迭代更新鱼群位置和速度,并输出最佳解和适应度值。
需要注意的是,代码中的容量限制是简化的,实际应用中可能需要更复杂的容量限制模型。
阅读全文