解释一下下面的代码:Examples x <- c( "Hello, what do you want to drink and eat?", "drink a bottle of milk", "drink a cup of coffee", "drink some water", "eat a cake", "eat a piece of pizza" ) dtm <- corp_or_dtm(x, from = "v", type = "dtm") D1 <- list( aa <- c("drink", "eat"), bb <- c("cake", "pizza"), cc <- c("cup", "bottle") ) y1 <- dictionary_dtm(dtm, D1, return_dictionary = TRUE) # # NA, duplicated words, non-existent words, # non-character elements do not affect the # result. D2 <-list( has_na <- c("drink", "eat", NA), this_is_factor <- factor(c("cake", "pizza")), this_is_duplicated <- c("cup", "bottle", "cup", "bottle"), do_not_exist <- c("tiger", "dream") ) y2 <- dictionary_dtm(dtm, D2, return_dictionary = TRUE) # # You can read into a data.frame # dictionary from a csv file. # Each column represents a group. D3 <- data.frame( aa <- c("drink", "eat", NA, NA), bb <- c("cake", "pizza", NA, NA), cc <- c("cup", "bottle", NA, NA), dd <- c("do", "to", "of", "and") ) y3 <- dictionary_dtm(dtm, D3, simple_sum = TRUE) # # If it is a matrix: mt <- t(as.matrix(dtm)) y4 <- dictionary_dtm(mt, D3, type = "t", return_dictionary = TRUE)
时间: 2023-05-19 21:04:18 浏览: 168
这段代码的作用是将一个包含多个字符串的向量x转换为文档-词矩阵(dtm),并使用一个字典D1对dtm进行处理,最终返回一个新的文档-词矩阵y1。
具体来说,corp_or_dtm函数将向量x转换为文档-词矩阵dtm,其中from参数指定了词频统计的基准,这里是按照单词(v)进行统计;type参数指定了返回的矩阵类型,这里是文档-词矩阵。
接着,定义了一个字典D1,其中包含了三个列表aa、bb和cc,分别表示“drink”和“eat”、“cake”和“pizza”、“cup”和“bottle”这三组词汇的同义词。dictionary_dtm函数将dtm和D1作为输入,根据字典将dtm中的词汇进行替换,返回一个新的文档-词矩阵y1。return_dictionary参数指定是否返回替换后的字典,这里是返回。
总的来说,这段代码的作用是将一个包含多个字符串的向量转换为文档-词矩阵,并使用一个字典对其中的词汇进行替换,返回一个新的文档-词矩阵和替换后的字典。
阅读全文