基于python+openCV+dlib+mysql的人脸识别门禁系统的设计与实现

时间: 2023-09-26 11:11:15 浏览: 42
人脸识别门禁系统是一种基于人脸识别技术的智能门禁系统,其可通过对人脸进行采集、识别和比对,实现对门禁的控制和管理。本文将详细阐述基于python+openCV+dlib+mysql的人脸识别门禁系统的设计与实现。 一、技术选型 本系统主要采用以下技术: 1. Python:作为主要编程语言,用于实现整个系统的逻辑控制和算法设计。 2. OpenCV:作为图像处理库,用于实现人脸检测、特征提取和人脸识别等核心功能。 3. Dlib:作为人脸识别库,用于实现人脸特征点检测和人脸识别等功能。 4. MySQL:作为数据库系统,用于存储人脸特征和相关信息。 二、系统设计 本系统主要包括以下功能模块: 1. 人脸采集模块:用于采集用户的人脸图像,并将其存储到本地或远程数据库中。 2. 人脸检测模块:用于检测人脸区域,提取人脸特征,并将其存储到数据库中。 3. 人脸识别模块:用于识别用户的人脸特征,并与数据库中的人脸特征进行比对,以确定用户身份。 4. 门禁控制模块:根据用户身份结果,控制门禁的开关。 5. 数据库管理模块:用于管理数据库中的人脸特征和相关信息。 三、系统实现 1. 人脸采集模块 人脸采集模块主要是通过摄像头对用户的人脸进行拍摄和保存。代码如下: ```python import cv2 cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() cv2.imshow("capture", frame) if cv2.waitKey(1) & 0xFF == ord('q'): #按q键退出 cv2.imwrite("face.jpg", frame) #保存人脸图像 break cap.release() cv2.destroyAllWindows() ``` 2. 人脸检测模块 人脸检测模块主要是通过OpenCV中的CascadeClassifier类进行人脸检测,再通过Dlib中的shape_predictor类进行人脸特征点检测和特征提取。代码如下: ```python import cv2 import dlib detector = dlib.get_frontal_face_detector() #人脸检测器 predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") #特征点检测器 img = cv2.imread("face.jpg") #读取人脸图像 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #转换为灰度图像 faces = detector(gray, 0) #检测人脸 for face in faces: landmarks = predictor(gray, face) #检测特征点 for n in range(68): x = landmarks.part(n).x y = landmarks.part(n).y cv2.circle(img, (x, y), 2, (0, 255, 0), -1) #绘制特征点 cv2.imshow("face", img) cv2.waitKey(0) cv2.destroyAllWindows() ``` 3. 人脸识别模块 人脸识别模块主要是通过Dlib中的face_recognition类进行人脸特征提取和比对。代码如下: ```python import face_recognition known_image = face_recognition.load_image_file("known_face.jpg") #读取已知的人脸图像 unknown_image = face_recognition.load_image_file("unknown_face.jpg") #读取待识别的人脸图像 known_encoding = face_recognition.face_encodings(known_image)[0] #提取已知人脸的特征 unknown_encoding = face_recognition.face_encodings(unknown_image)[0] #提取待识别人脸的特征 results = face_recognition.compare_faces([known_encoding], unknown_encoding) #比对人脸特征 if results[0]: print("Match") else: print("No match") ``` 4. 门禁控制模块 门禁控制模块主要是通过GPIO控制门禁的开关。代码如下: ```python import RPi.GPIO as GPIO import time GPIO.setmode(GPIO.BOARD) GPIO.setup(11, GPIO.OUT) GPIO.output(11, GPIO.HIGH) #开门 time.sleep(5) #等待5秒 GPIO.output(11, GPIO.LOW) #关门 GPIO.cleanup() #清理GPIO资源 ``` 5. 数据库管理模块 数据库管理模块主要是通过MySQLdb模块实现对MySQL数据库的连接和操作,包括新建数据库、新建表、插入数据、查询数据等。代码如下: ```python import MySQLdb #连接数据库 conn = MySQLdb.connect(host="localhost", user="root", passwd="123456", db="test", charset="utf8") #新建表 cursor = conn.cursor() sql = "CREATE TABLE `face` (`id` int(11) NOT NULL AUTO_INCREMENT, `name` varchar(50) NOT NULL, `encoding` text NOT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB DEFAULT CHARSET=utf8;" cursor.execute(sql) #插入数据 name = "张三" encoding = "0.1,0.2,0.3,0.4" sql = "INSERT INTO `face` (`name`, `encoding`) VALUES (%s, %s)" cursor.execute(sql, (name, encoding)) conn.commit() #查询数据 sql = "SELECT * FROM `face` WHERE `name`=%s" cursor.execute(sql, (name,)) result = cursor.fetchone() print(result) cursor.close() conn.close() ``` 四、总结 本文主要介绍了基于python+openCV+dlib+mysql的人脸识别门禁系统的设计与实现。该系统主要采用了Python作为主要编程语言,OpenCV、Dlib作为图像处理和人脸识别库,MySQL作为数据库系统。通过对这些技术的应用,实现了人脸采集、检测、识别和门禁控制等核心功能。该系统可以应用于各类场景的门禁控制和身份验证,具有较高的实用价值。

相关推荐

人脸识别门禁系统主要分为以下几个步骤: 1. 采集人脸数据:使用摄像头采集人脸数据,包括正面、侧面、斜视等角度的照片,并将这些数据存储在数据库中。 2. 人脸识别:使用OpenCV库中的人脸识别算法对人脸进行识别,判断是否为已经存储在数据库中的人脸数据。 3. 控制门禁:如果人脸识别结果是已经授权的用户,则开启门禁通过;否则,门禁保持关闭状态。 以下是一个基于Python和OpenCV的人脸识别门禁系统的设计和实现: 1. 安装OpenCV库:使用pip命令安装OpenCV库,命令为:pip install opencv-python。 2. 收集人脸数据:使用摄像头采集人脸数据。可以使用OpenCV库中的cv2.VideoCapture函数来获取摄像头捕获的视频流,使用cv2.imshow函数显示视频流。可以使用cv2.CascadeClassifier函数来检测人脸,并使用cv2.rectangle函数在图像上标记出人脸位置,然后使用cv2.imwrite函数保存人脸图像。 3. 创建人脸数据库:使用Python中的sqlite3库创建一个sqlite3数据库,用于存储已经采集到的人脸数据。可以使用sqlite3库中的execute函数执行SQL语句来创建数据库表格。 4. 人脸识别:使用OpenCV库中的人脸识别算法进行人脸识别。可以使用cv2.face.LBPHFaceRecognizer_create函数创建一个LBPH人脸识别器,并使用train函数训练识别器。在识别过程中,可以使用detectMultiScale函数检测人脸,并使用predict函数对人脸进行识别。 5. 控制门禁:如果人脸识别结果是已经授权的用户,则开启门禁通过;否则,门禁保持关闭状态。 代码示例: python import cv2 import sqlite3 # 定义摄像头编号 camera_port = 0 # 定义人脸检测器 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') # 定义LBPH人脸识别器 recognizer = cv2.face.LBPHFaceRecognizer_create() # 创建人脸数据库 def create_database(): conn = sqlite3.connect('face.db') c = conn.cursor() c.execute('''CREATE TABLE IF NOT EXISTS faces (id INTEGER PRIMARY KEY AUTOINCREMENT, name TEXT NOT NULL, image BLOB NOT NULL)''') conn.commit() conn.close() # 添加人脸数据到数据库 def add_face(name, image): conn = sqlite3.connect('face.db') c = conn.cursor() c.execute("INSERT INTO faces (name, image) VALUES (?, ?)", (name, image)) conn.commit() conn.close() # 从数据库中获取人脸数据 def get_faces(): conn = sqlite3.connect('face.db') c = conn.cursor() c.execute("SELECT * FROM faces") rows = c.fetchall() conn.close() return rows # 训练人脸识别器 def train_recognizer(faces): images = [] labels = [] for id, name, image in faces: # 转换为灰度图像 gray_image = cv2.cvtColor(cv2.imdecode(image, cv2.IMREAD_GRAYSCALE), cv2.COLOR_GRAY2BGR) # 检测人脸 faces = face_cascade.detectMultiScale(gray_image, 1.3, 5) for (x, y, w, h) in faces: # 裁剪人脸图像 face = gray_image[y:y+h, x:x+w] # 添加到训练集中 images.append(face) labels.append(id) # 训练识别器 recognizer.train(images, np.array(labels)) # 人脸识别 def recognize_face(): # 打开摄像头 cap = cv2.VideoCapture(camera_port) while True: # 读取视频帧 ret, frame = cap.read() # 转换为灰度图像 gray_image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 检测人脸 faces = face_cascade.detectMultiScale(gray_image, 1.3, 5) for (x, y, w, h) in faces: # 裁剪人脸图像 face = gray_image[y:y+h, x:x+w] # 进行识别 id, confidence = recognizer.predict(face) # 如果置信度小于50,则认为识别成功 if confidence < 50: # 获取数据库中对应的人脸数据 conn = sqlite3.connect('face.db') c = conn.cursor() c.execute("SELECT * FROM faces WHERE id=?", (id,)) row = c.fetchone() conn.close() # 显示识别结果 cv2.putText(frame, row[1], (x, y-20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) # 控制门禁 open_door() else: # 显示识别失败的结果 cv2.putText(frame, 'Unknown', (x, y-20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 0, 255), 2) # 显示视频帧 cv2.imshow('Face Recognition', frame) # 等待按键操作 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放摄像头 cap.release() cv2.destroyAllWindows() # 控制门禁 def open_door(): pass # 主函数 if __name__ == '__main__': create_database() # 添加人脸数据到数据库 add_face('Tom', cv2.imencode('.jpg', cv2.imread('tom.jpg'))[1].tostring()) add_face('Jerry', cv2.imencode('.jpg', cv2.imread('jerry.jpg'))[1].tostring()) # 获取人脸数据 faces = get_faces() # 训练识别器 train_recognizer(faces) # 开始人脸识别 recognize_face() 在上面的代码示例中,我们首先创建了一个sqlite3数据库,用于存储人脸数据。然后,我们使用摄像头采集人脸数据,并将人脸数据添加到数据库中。接着,我们获取人脸数据,并使用训练数据训练了一个LBPH人脸识别器。最后,我们使用摄像头进行人脸识别,如果识别成功则开启门禁通过。
很高兴回答你关于Python和OpenCV人脸识别门禁系统的问题!要实现这样的系统,你需要使用OpenCV库中的人脸识别功能和Python编程语言。 首先,你需要安装OpenCV库。你可以使用以下命令在Python环境中安装它: pip install opencv-python 安装完成后,你可以导入OpenCV库并使用其人脸识别功能。以下是一个简单的示例代码: python import cv2 # 加载人脸识别器 face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') # 打开摄像头 cap = cv2.VideoCapture(0) while True: # 读取摄像头图像 ret, frame = cap.read() # 将图像转换为灰度图 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 使用人脸识别器检测人脸 faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) # 在图像上标记检测到的人脸 for (x, y, w, h) in faces: cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 3) # 显示图像 cv2.imshow('Face Recognition', frame) # 按下 'q' 键退出 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放摄像头和关闭窗口 cap.release() cv2.destroyAllWindows() 这段代码使用摄像头读取图像,并通过人脸识别器检测人脸。检测到的人脸会在图像上用绿色矩形标记出来。按下 'q' 键可以退出程序。 你可以根据你的需求进一步扩展这个基本的示例,例如添加身份验证功能、与门禁系统的集成等。 希望这个示例对你有所帮助!如果还有其他问题,请随时提问。
基于Python OpenCV的人脸识别员工考勤系统源码(毕业设计)。这是一个.zip压缩文件,包含用于构建员工考勤系统的所有源代码。 该系统利用OpenCV库中的人脸识别功能,通过摄像头捕获员工的图像,并识别出人脸。系统首先要求员工进行一次人脸注册,以便后续识别。注册过程中,系统会提示员工保持直视摄像头并保持平静的表情,以确保准确识别。 一旦员工注册完成,系统将生成一个唯一的人脸特征向量,用于后续识别。在考勤期间,系统会实时检测摄像头中的人脸,并与已注册的人脸进行匹配。如果匹配成功,则系统会记录员工的到岗时间,并进行相应的计时。 系统还可以生成考勤报告,包括员工的到岗时间、离岗时间以及工作时长。这些数据可以以文本形式输出,也可以通过可视化图表展示。此外,系统还提供管理员权限,可以管理员工信息、查看考勤记录和生成报告。 源代码中包含了系统的主要功能模块,如人脸注册、人脸识别、考勤记录等。其中用到了Python的基本语法和OpenCV库的相关函数。通过阅读源代码,你可以了解到系统的实现原理和代码逻辑。 该.zip压缩文件还包含了一份详细的说明文档,介绍了系统的安装步骤、配置要求以及使用方法。你可以根据说明文档来运行系统,并进行相关设置和操作。 希望这份源码能对你的毕业设计有所帮助,祝你顺利完成!
### 回答1: 树莓派3b 是一种小型计算机,可以应用于各种嵌入式系统中。结合opencv图像处理库,可以实现人脸识别门禁系统。 在系统中,树莓派3b作为主控制器,通过摄像头采集图片,并使用opencv进行图像处理和人脸识别。当有人靠近门口时,树莓派可以识别出其面部信息,并与已存储的人脸数据库进行对比,从而确定是否有权限进入。 为了保证系统的安全性,可以通过添加语音控制和身份验证等功能来进一步加强系统的安全性。同时可以加入实时监控功能,将采集的画面实时传输至管理人员,及时反馈人员进出信息。 总体来说,基于树莓派3b和opencv的人脸识别门禁系统有着较高的安全性、高效的运行速度以及良好的稳定性等优点,可以应用于学校、公司等地的门禁系统中。 ### 回答2: 随着人们对门禁安全性的日益重视,基于树莓派3b和OpenCV的人脸识别门禁系统得到越来越广泛的应用。 首先,使用树莓派3b可以实现低成本的门禁控制系统。树莓派作为一种单片机,它既可以作为一个微型计算机来完成门禁控制系统的主体功能,又可以根据不同系统的需求接入不同的外设,如门禁读卡器、门铃、LED灯等。 其次,OpenCV是一款强大的开源计算机视觉库,它支持多种计算机视觉算法,包括人脸检测和识别。人脸识别门禁系统主要通过将门禁区域内的摄像头与OpenCV进行连接,实现对人脸的实时监测和识别,从而控制门禁的开启与关闭。OpenCV的高精度识别,可以大大提高门禁性能。 最后,人脸识别门禁系统可以应用于多种场所,如工厂、学校、小区等,实现了高效门禁控制、流畅通行、安全管理等功能。同时,基于树莓派3B和OpenCV的门禁系统不仅成本低、性能高,而且通过不断地更新软件算法,也可以不断地提升门禁系统的安全性级别,拓展门禁系统的应用领域。 ### 回答3: 基于树莓派3b和opencv的人脸识别门禁系统是一种非常先进的智能门禁系统。该系统可以根据注册的人脸信息进行快速准确的身份识别,并控制门禁的进出。该系统的核心技术是使用opencv对摄像头捕捉到的图像进行处理和分析,找出其中的人脸特征,并与已有的人脸模板进行匹配。 在使用该门禁系统时,用户首先需要将自己的人脸信息进行注册,包括姓名、照片等。当用户来到门禁处时,门禁系统会自动对其进行人脸识别,并与注册时的信息进行匹配,如果匹配成功,系统会自动开启门禁,否则门禁将无法开启。该系统不仅可以提高门禁的安全性和便利程度,还可以减少传统门禁系统的管理和维护成本。 该门禁系统的优势在于其高精度、高速度、高稳定性、低成本、易操作等特点,可以应用于企业、学校、公共场所等各种场合。同时,该系统还具有很好的扩展性和可定制性,可以根据用户的需求进行定制和升级。但是,该系统也存在一些缺点,如依赖网络环境、对光线的要求较高等,需要用户在使用时注意避免这些问题的影响。 总之,基于树莓派3b和opencv的人脸识别门禁系统是一种非常实用和先进的门禁系统,可以为用户提供更加便捷、安全、高效的出入系统。
### 回答1: Python的OpenCV库和MediaPipe工具包是可以一起使用的,以实现手势识别的功能。 首先,需要在Python中安装OpenCV库和MediaPipe工具包。可以使用pip命令来安装它们: pip install opencv-python pip install mediapipe 安装完成后,就可以开始使用了。 首先,导入必要的库: python import cv2 import mediapipe as mp 接下来,创建一个MediaPipe的Hand对象和一个OpenCV的VideoCapture对象,用于读取摄像头输入: python mp_hands = mp.solutions.hands hands = mp_hands.Hands() cap = cv2.VideoCapture(0) 然后,使用一个循环来读取摄像头输入并进行手势识别: python while True: ret, frame = cap.read() if not ret: break frame_RGB = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) results = hands.process(frame_RGB) if results.multi_handedness: for hand_landmarks in results.multi_hand_landmarks: # 在这里可以对hand_landmarks进行处理和识别手势的操作 cv2.imshow('Gesture Recognition', frame) if cv2.waitKey(1) == ord('q'): break 在循环中,首先将读取到的帧转换为RGB格式,然后使用Hands对象的process方法对该帧进行手势识别。得到的结果存储在results变量中。 在对每个检测到的手部进行循环处理时,可以使用hand_landmarks来获取该手的关键点坐标。可以根据这些关键点的位置和运动轨迹来实现手势的识别和分析。 最后,通过cv2.imshow方法显示图像,并使用cv2.waitKey方法等待用户操作。当用户按下"q"键时,循环终止,程序退出。 通过以上步骤,就可以使用Python的OpenCV库和MediaPipe工具包实现手势识别的功能了。当然,实际的手势识别算法和操作需要根据具体需求进行进一步的开发和优化。 ### 回答2: Python OpenCV和MediaPipe结合使用可以实现手势识别。首先,我们需要安装必要的库和工具,包括Python、opencv-python、mediapipe和其他依赖项。 然后,我们可以使用MediaPipe提供的HandTracking模块来检测手部的关键点。它使用机器学习模型来识别手势,并返回手部关键点的坐标。我们可以通过OpenCV的视频捕捉模块读取摄像头的实时图像。 接下来,我们通过应用MediaPipe的HandTracking模块获取手部关键点的坐标,并使用OpenCV将这些坐标绘制到图像上,以便我们可以实时看到手部的位置和动作。 完成这些基本的设置后,我们可以定义特定的手势,例如拇指和食指的指尖接触,作为一个简单的示例。我们可以通过检查特定的关键点之间的距离和角度来识别这种手势。如果关键点之间的距离较小并且角度较小,则我们可以确定手势是拇指和食指的指尖接触。 我们可以使用类似的方法来识别其他手势,比如手掌的张开和闭合,拳头的形成等等。我们可以定义一系列规则和阈值来确定特定手势的识别。 最后,我们可以根据检测到的手势执行特定的操作。例如,当识别到拇指和食指的指尖接触时,我们可以触发相机的快门,实现手势拍照。 总之,Python的OpenCV和MediaPipe结合使用可以实现手势识别。我们可以利用MediaPipe的HandTracking模块检测手部关键点,并使用OpenCV实时绘制手势位置。通过定义特定手势的规则,我们可以识别各种手势并执行相应操作。
下面是一个简单的Python + OpenCV实现人脸添加墨镜特效的例子: python import cv2 # 加载人脸分类器 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') # 加载墨镜图像 glasses = cv2.imread('glasses.png', -1) # 打开摄像头 cap = cv2.VideoCapture(0) while True: # 读取摄像头帧 ret, frame = cap.read() # 转换帧至灰度图像 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 检测人脸 faces = face_cascade.detectMultiScale(gray, 1.3, 5) # 在每个检测到的人脸上添加墨镜 for (x, y, w, h) in faces: # 调整墨镜尺寸以适应人脸大小 glasses_resized = cv2.resize(glasses, (w, int(h/2))) # 计算墨镜的位置,并将其放入帧中 x_offset = x y_offset = int(y + h/3) x_end = x_offset + glasses_resized.shape[1] y_end = y_offset + glasses_resized.shape[0] # 检查墨镜是否超出帧的边界 if x_offset < 0 or y_offset < 0 or x_end > frame.shape[1] or y_end > frame.shape[0]: continue alpha_s = glasses_resized[:, :, 3] / 255.0 alpha_l = 1.0 - alpha_s for c in range(0, 3): frame[y_offset:y_end, x_offset:x_end, c] = (alpha_s * glasses_resized[:, :, c] + alpha_l * frame[y_offset:y_end, x_offset:x_end, c]) # 显示帧 cv2.imshow('frame', frame) # 按下q键退出循环 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放资源 cap.release() cv2.destroyAllWindows() 这个例子中使用了OpenCV的人脸分类器来检测人脸,然后在每个检测到的人脸上添加墨镜。为了调整墨镜的大小以适应人脸,我们使用了OpenCV的 resize() 函数。在将墨镜加入帧中时,我们需要将其透明度考虑在内,以免墨镜覆盖了人脸。最后,我们使用OpenCV的imshow()函数显示帧,按下q键退出循环。
好的,下面是一个使用Python+OpenCV+MediaPipe实现手势识别系统的项目示例: 1. 安装必要的库,包括OpenCV、MediaPipe和NumPy等。 pip install opencv-python mediapipe numpy 2. 导入必要的库和模块: python import cv2 import mediapipe as mp import numpy as np 3. 初始化Hand Tracking模块: python mp_hands = mp.solutions.hands hands = mp_hands.Hands( static_image_mode=False, max_num_hands=2, min_detection_confidence=0.7, min_tracking_confidence=0.7) 4. 读取摄像头捕获到的图像: python cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() if not ret: continue 5. 对图像中的手部进行跟踪和检测: python # 转换图像颜色空间 image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # 处理图像 results = hands.process(image) # 将图像颜色空间转换回来 image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) 6. 对检测到的手部进行手势识别,并根据识别结果做出相应的反应: python # 检测到手部 if results.multi_hand_landmarks: for hand_landmarks in results.multi_hand_landmarks: # 获取手部关键点坐标 landmarks = np.array([[lmk.x, lmk.y, lmk.z] for lmk in hand_landmarks.landmark]).T # 进行手势识别 gesture = gesture_recognition(landmarks) # 根据手势识别结果做出相应的反应 if gesture == 'Fist': # 做出拳头手势的反应 ... elif gesture == 'Open': # 做出张开手掌的反应 ... else: # 其他手势的反应 ... 7. 释放摄像头和Hand Tracking模块,并关闭窗口: python cap.release() hands.close() cv2.destroyAllWindows() 需要注意的是,以上代码只是一个简单的示例,实际的手势识别系统还需要进行模型的训练和优化,以及对不同的手势进行分类和识别。

最新推荐

Python+OpenCV实现图像的全景拼接

主要为大家详细介绍了Python+OpenCV实现图像的全景拼接,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

Python+Dlib+Opencv实现人脸采集并表情判别功能的代码

主要介绍了Python+Dlib+Opencv实现人脸采集并表情判别,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

python+opencv实现动态物体识别

主要为大家详细介绍了python+opencv实现动态物体识别,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

基于Python+Open CV的手势识别算法设计

手势识别在设计智能高效的人机界面方面具有至关重要的作用, 目前手势识别已应用到手语识别、智能监控、到虚拟现实等各个领域,手势识别的原理都是利用各种传感器(例如红外、摄像头等)对手部的形态进行捕捉并进行...

python+opencv实现移动侦测(帧差法)

主要为大家详细介绍了python+opencv实现移动侦测,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

基于at89c51单片机的-智能开关设计毕业论文设计.doc

基于at89c51单片机的-智能开关设计毕业论文设计.doc

"蒙彼利埃大学与CNRS联合开发细胞内穿透载体用于靶向catphepsin D抑制剂"

由蒙彼利埃大学提供用于靶向catphepsin D抑制剂的细胞内穿透载体的开发在和CNRS研究单位- UMR 5247(马克斯·穆塞隆生物分子研究专长:分子工程由Clément Sanchez提供于2016年5月26日在评审团面前进行了辩护让·吉隆波尔多大学ARNA实验室CNRS- INSERM教授报告员塞巴斯蒂安·帕波特教授,CNRS-普瓦捷大学普瓦捷介质和材料化学研究所报告员帕斯卡尔·拉斯特洛教授,CNRS-审查员让·马丁内斯蒙彼利埃大学Max Mousseron生物分子研究所CNRS教授审查员文森特·利索夫斯基蒙彼利埃大学Max Mousseron生物分子研究所CNRS教授论文主任让-弗朗索瓦·赫尔南德斯CNRS研究总监-蒙彼利埃大学Max Mousseron生物分子研究论文共同主任由蒙彼利埃大学提供用于靶向catphepsin D抑制剂的细胞内穿透载体的开发在和CNRS研究单位- UMR 5247(马克斯·穆塞隆生物分子研究专长:分子工程由Clément Sanchez提供�

设计一个程序有一个字符串包含n个字符 写一个函数 将此字符串中从第m个字符开始的全部字符复制成为另一个字符串 用指针c语言

以下是用指针实现将字符串中从第m个字符开始的全部字符复制成为另一个字符串的C语言程序: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> void copyString(char *a, char *b, int n, int m); int main() { int n, m; char *a, *b; printf("请输入字符串长度n:"); scanf("%d", &n); a = (char*)malloc(n * sizeof(char)); b =

基于C#多机联合绘图软件的实现-毕业设计论文.doc

基于C#多机联合绘图软件的实现-毕业设计论文.doc

4G车载网络中无线电资源的智能管理

4G车载网络中无线电资源的智能管理汽车网络从4G到5G的5G智能无线电资源管理巴黎萨克雷大学博士论文第580号博士学院博士专业:网络、信息与通信研究单位:巴黎萨克雷大学,UVSQ,LI PARAD,78180,法国伊夫林省圣昆廷参考:凡尔赛大学-伊夫林省圣昆廷论文于11月30日在巴黎萨克雷发表并答辩2021年,由玛丽亚姆·阿卢奇·马迪陪审团组成Pascal Lorenz总裁上阿尔萨斯大学大学教授Mohamed Yacine Ghamri-Doudane拉罗谢尔大学报告员和审查员教授Rami Langar报告员和审查员马恩河谷大学Oyunchimeg SHAGDARVEDECOM研发(HDR)团队负责人审查员论文方向Samir TOHME博士生导师巴黎萨克雷大学名誉教授UVSQ/LI- PARADKALLEL KHEMIRI共同监督巴黎萨克雷UVSQ/大卫Guy Pujolle受邀索邦大学Tara Yahiya邀请巴黎萨克雷大学/LISN高级讲师(HDR)博士论文NNT:2021UPASG061谢谢你首先,我要感谢我的论文导师M.萨米�