python代码
时间: 2023-07-02 13:24:11 浏览: 78
python:Python的源代码集合,用于基础编程课程,通用应用程序和小型项目
以下是一个基于Python和Keras实现手写数字识别的示例代码:
```python
# 导入必要的库
import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.utils import np_utils
# 加载MNIST数据集
(X_train, y_train), (X_test, y_test) = mnist.load_data()
# 将图像转换为模型可读取的数字矩阵并进行标准化和归一化处理
X_train = X_train.reshape(X_train.shape[0], 28, 28, 1)
X_test = X_test.reshape(X_test.shape[0], 28, 28, 1)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
# 将标签进行独热编码
y_train = np_utils.to_categorical(y_train, 10)
y_test = np_utils.to_categorical(y_test, 10)
# 构建CNN模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
# 编译模型
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# 训练模型
model.fit(X_train, y_train, batch_size=32, epochs=10, verbose=1)
# 评估模型
score = model.evaluate(X_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
```
这段代码实现了一个简单的CNN模型,使用MNIST数据集进行训练和测试,并输出了测试集的准确率。你可以根据需要进行修改和优化,以进一步提高模型性能。
阅读全文