python代码不用tensorflow
时间: 2024-09-23 08:08:43 浏览: 35
如果你不想使用TensorFlow,你可以选择PyTorch作为深度学习框架,同样可以实现LSTM-Transformer混合模型。以下是使用PyTorch的一个简单示例:
```python
import torch
import torch.nn as nn
class CustomModel(nn.Module):
def __init__(self, vocab_size, embedding_size, lstm_units, d_model, num_heads, n_transformer_layers):
super(CustomModel, self).__init__()
self.embedding = nn.Embedding(vocab_size, embedding_size)
self.lstm = nn.LSTM(embedding_size, lstm_units, bidirectional=True)
self.transformer_encoder = nn.TransformerEncoderLayer(d_model, num_heads)
self.transformer_encoder_stack = nn.TransformerEncoder(self.transformer_encoder, n_transformer_layers)
self.dense = nn.Linear(lstm_units * 2 + d_model, output_size) # 综合LSTM和Transformer的结果
def forward(self, inputs):
embedded = self.embedding(inputs) # 转换为嵌入向量
packed_embedded = nn.utils.rnn.pack_padded_sequence(embedded, lengths, enforce_sorted=False) # 将填充后的序列打包
packed_output, _ = self.lstm(packed_embedded) # LSTMTokenEmbedder的前向传播
packed_output, _ = nn.utils.rnn.pad_packed_sequence(packed_output) # 解包并恢复原始形状
sequence_output = packed_output[:, -1] # 取最后一个时间步的输出
transformer_output = self.transformer_encoder_stack(sequence_output) # Transformer编码
combined_output = torch.cat((sequence_output, transformer_output), dim=-1) # 结合LSTM和Transformer结果
final_output = self.dense(combined_output) # 输出层
return final_output
# 初始化模型参数
model = CustomModel(vocab_size, embedding_size, lstm_units, d_model, num_heads, n_transformer_layers)
# 加载数据、设置优化器等步骤
optimizer = torch.optim.Adam(model.parameters())
loss_fn = nn.CrossEntropyLoss()
# ...其他训练和预测部分
```
在这个代码里,我们定义了一个名为`CustomModel`的自定义网络,它包含嵌入、双向LSTM、Transformer编码器和全连接层。请注意,你需要将`lengths`替换为你的实际序列长度列表。
阅读全文