编写pytorch代码,定义LSTMAttention模型,定义一个CPSO优化算法,在算法下面初始化粒子数、惯性权重、学习因子、加速常数,生成初始粒子群。利用训练集计算模型的预测误差,将预测误差当作每个粒子的适应度值,根据粒子的适应度值,选择最优的粒子作为当前的全局最优解,以及每个粒子自身的局部最优解,根据全局最优解和局部最优解,更新每个粒子的速度和位置,使用更新后的参数来更新LSTM模型的权重和偏置,计算更新后的LSTM模型在训练集上的误差,并更新全局最优解和局部最优解,根据收敛条件是否满足,决定是否继续迭代,如果迭代次数达到预设值或误差已经足够小,则停止迭代,并返回最优的LSTM模型参数
时间: 2024-03-23 09:40:13 浏览: 157
好的,以下是代码示例:
首先定义LSTMAttention模型,代码如下:
```python
import torch
import torch.nn as nn
class LSTMAttention(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(LSTMAttention, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
self.attn = nn.Linear(hidden_size, hidden_size)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
out, _ = self.lstm(x, (h0, c0))
attn_weights = torch.softmax(self.attn(out[:, -1]), dim=1)
context = torch.bmm(attn_weights.unsqueeze(1), out).squeeze(1)
out = self.fc(context)
return out
```
然后定义CPSO优化算法,代码如下:
```python
import random
import numpy as np
class CPSO:
def __init__(self, n_particles, w, c1, c2, max_iter, tol):
self.n_particles = n_particles
self.w = w
self.c1 = c1
self.c2 = c2
self.max_iter = max_iter
self.tol = tol
self.global_best_pos = None
self.global_best_val = np.inf
self.particles = []
self.velocities = []
for i in range(n_particles):
particle = []
velocity = []
for j in range(n_params):
particle.append(random.uniform(-1, 1))
velocity.append(random.uniform(-1, 1))
self.particles.append(particle)
self.velocities.append(velocity)
def optimize(self, X_train, y_train, model):
for i in range(self.max_iter):
for j in range(self.n_particles):
params = self.particles[j]
velocity = self.velocities[j]
model.set_params(params)
y_pred = model.predict(X_train)
val = mse(y_train, y_pred)
if val < self.global_best_val:
self.global_best_val = val
self.global_best_pos = params
if val < self.particle_best_vals[j]:
self.particle_best_vals[j] = val
self.particle_best_pos[j] = params
v_new = self.w * velocity \
+ self.c1 * random.uniform(0, 1) * (np.array(self.particle_best_pos[j]) - np.array(params)) \
+ self.c2 * random.uniform(0, 1) * (np.array(self.global_best_pos) - np.array(params))
x_new = params + v_new
self.velocities[j] = v_new
self.particles[j] = x_new.tolist()
model.set_params(x_new.tolist())
if self.global_best_val < self.tol:
break
model.set_params(self.global_best_pos)
y_pred = model.predict(X_train)
return model, self.global_best_val, y_pred
```
最后是主函数部分,代码如下:
```python
import torch.optim as optim
import torch.nn.functional as F
def train(model, optimizer, X_train, y_train):
model.train()
optimizer.zero_grad()
output = model(X_train)
loss = F.mse_loss(output, y_train)
loss.backward()
optimizer.step()
return loss.item()
def evaluate(model, X_val, y_val):
model.eval()
with torch.no_grad():
output = model(X_val)
loss = F.mse_loss(output, y_val)
return loss.item()
n_particles = 10
w = 0.7
c1 = 1.5
c2 = 1.5
max_iter = 100
tol = 1e-4
n_params = sum(p.numel() for p in model.parameters())
c_pso = CPSO(n_particles, w, c1, c2, max_iter, tol)
params, train_loss, y_pred = c_pso.optimize(X_train, y_train, model)
model = LSTMAttention(input_size, hidden_size, num_layers, output_size).to(device)
optimizer = optim.Adam(model.parameters())
for i in range(100):
train_loss = train(model, optimizer, X_train, y_train)
val_loss = evaluate(model, X_val, y_val)
print(f"Epoch {i+1}, Train Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}")
# update global and local best
if val_loss < global_best_val:
global_best_val = val_loss
global_best_params = model.get_params()
if val_loss < particle_best_vals[j]:
particle_best_vals[j] = val_loss
particle_best_params[j] = model.get_params()
# update velocity and position
v_new = w * velocity \
+ c1 * random.uniform(0, 1) * (np.array(particle_best_params[j]) - np.array(params)) \
+ c2 * random.uniform(0, 1) * (np.array(global_best_params) - np.array(params))
x_new = params + v_new
velocity = v_new
params = x_new.tolist()
model.set_params(params)
```
在主函数中,我们首先定义了CPSO的参数,并使用CPSO算法优化模型参数。然后我们定义了LSTMAttention模型和优化器,并在训练集上训练模型。在训练过程中,我们更新全局最优解和局部最优解,并更新每个粒子的速度和位置。最后,我们根据收敛条件判断是否停止迭代,并返回最优的LSTM模型参数。
阅读全文