高斯朴素贝叶斯python
时间: 2023-11-10 07:07:32 浏览: 218
python实现朴素贝叶斯算法
5星 · 资源好评率100%
高斯朴素贝叶斯分类器是一种基于贝叶斯定理和特征条件独立假设的分类方法,它假设每个特征的概率分布都是高斯分布。Python中可以使用scikit-learn库实现高斯朴素贝叶斯分类器,具体实现方法可以参考引用中的博客。在使用时,需要先将数据集进行处理,然后使用fit()方法拟合模型,最后使用predict()方法进行预测。需要注意的是,在使用高斯朴素贝叶斯分类器时,需要保证特征之间的条件独立性,否则会影响分类效果。
阅读全文