51单片机stc89c52rc8*8点阵

时间: 2023-10-08 07:10:02 浏览: 80
51单片机STC89C52RC可以通过8*8点阵模块来实现点阵显示功能。首先需要将点阵模块的引脚与单片机的IO口相连,具体连接方式可以查看点阵模块的数据手册。 然后在单片机程序中,需要定义点阵模块所使用的点阵字符集,可以使用自己设计的字符集,也可以使用已经编好的字符集库。接下来,程序需要根据需要显示的内容,将相应的字符或者图形转换为点阵形式,并通过IO口输出到点阵模块上进行显示。 需要注意的是,在点阵显示过程中需要控制显示的刷新频率,以避免闪烁或者失真等问题。另外,因为点阵模块的驱动方式多种多样,具体的控制方法会有所不同,需要根据具体的点阵模块和单片机型号进行调整和优化。
相关问题

stc89c52rc点阵led爱心的代码

STC89C52RC是一款常用的单片机,点阵LED爱心是一种常见的显示效果。下面是一个简单的STC89C52RC点阵LED爱心的代码示例: ```c #include <reg52.h> // 定义点阵LED显示的图案 unsigned char code led_heart[] = { 0x00, 0x18, 0x3C, 0x7E, 0x7E, 0x3C, 0x18, 0x00 }; // 延时函数 void delay(unsigned int t) { unsigned int i, j; for (i = 0; i < t; i++) { for (j = 0; j < 120; j++); } } void main() { unsigned char i; while (1) { // 循环显示爱心图案 for (i = 0; i < 8; i++) { P0 = led_heart[i]; delay(100); // 延时100ms } } } ``` 这段代码使用了STC89C52RC的P0口来控制点阵LED的显示。通过循环显示爱心图案的每一行,实现了点阵LED爱心的效果。

电子琴设计基于stc89c52rc单片机

电子琴是一种基于微处理器的乐器,通过按键控制发声,其发声原理是通过将数字信号转换为模拟信号,再经过音箱输出声音。在本设计中,我们以STC89C52RC单片机为核心,设计一个八键电子琴。 电子琴的硬件设计如下: 1. STC89C52RC单片机,作为电子琴的核心处理器。 2. 8个按键,分别对应8个音符,按下按键时,通过IO口输入到单片机。 3. 一个音频输出接口,通过该接口将数字信号转换为模拟信号,再经过音箱输出声音。 4. 一个LCD液晶显示屏,用于显示当前按下的音符。 电子琴的软件设计如下: 1. 确定8个音符的频率。 2. 初始化定时器,设置定时器的周期,控制每个音符的持续时间。 3. 按下按键时,通过IO口输入到单片机,根据不同的按键按下情况,控制输出对应的音符频率。 4. 将数字信号转换为模拟信号,通过音箱输出声音。 5. 利用LCD液晶显示屏显示当前按下的音符。 代码实现如下: ```c #include <reg52.h> #include <intrins.h> #include <stdlib.h> #include <string.h> #define uint unsigned int #define uchar unsigned char // 定义IO口 sbit BEEP = P2^3; sbit KEY1 = P3^0; sbit KEY2 = P3^1; sbit KEY3 = P3^2; sbit KEY4 = P3^3; sbit KEY5 = P3^4; sbit KEY6 = P3^5; sbit KEY7 = P3^6; sbit KEY8 = P3^7; // 定义LCD液晶显示屏接口 sbit RS = P1^0; sbit RW = P1^1; sbit EN = P1^2; // 定义全局变量 uint code FREQ[8] = {523, 587, 659, 698, 784, 880, 988, 1047}; // 定义8个音符的频率 uchar code NOTE[8] = {'C', 'D', 'E', 'F', 'G', 'A', 'B', 'C'}; // 定义8个音符的名称 uchar note_index = 0; // 当前按下的音符索引 uchar note_name[2] = {0}; // 当前按下的音符名称 // LCD液晶显示屏初始化函数 void LCD_Init() { delay_ms(500); // 等待LCD液晶显示屏上电 LCD_WriteCmd(0x38); // 8位数据接口,2行显示,5x7点阵字符 LCD_WriteCmd(0x08); // 关闭显示 LCD_WriteCmd(0x01); // 清屏 LCD_WriteCmd(0x06); // 光标移动,不移动屏幕 LCD_WriteCmd(0x0c); // 显示开启,光标不显示 } // LCD液晶显示屏写命令函数 void LCD_WriteCmd(uchar cmd) { RS = 0; RW = 0; P0 = cmd; EN = 1; delay_us(5); EN = 0; delay_ms(2); } // LCD液晶显示屏写数据函数 void LCD_WriteData(uchar dat) { RS = 1; RW = 0; P0 = dat; EN = 1; delay_us(5); EN = 0; delay_ms(2); } // LCD液晶显示屏写字符串函数 void LCD_WriteString(char *str) { while (*str != '\0') { LCD_WriteData(*str++); } } // 延时函数 void delay_ms(uint n) { uint i, j; for (i = 0; i < n; i++) { for (j = 0; j < 1000; j++); } } // 播放音符函数 void Play_Note(uint freq, uint time) { uint i, j, k; uint T = 1000000 / freq; for (i = 0; i < time; i++) { for (j = 0; j < T / 2; j++) { BEEP = 1; // 输出高电平 for (k = 0; k < 10; k++); // 延时 BEEP = 0; // 输出低电平 for (k = 0; k < 10; k++); // 延时 } } } // 定时器0中断服务函数 void T0_ISR() interrupt 1 { TH0 = (65536 - 1000) / 256; // 定时器初值 TL0 = (65536 - 1000) % 256; note_name[0] = NOTE[note_index]; // 获取当前按下的音符名称 LCD_WriteCmd(0x80); // 设置光标位置,第1行第1列 LCD_WriteString("Note:"); LCD_WriteData(note_name[0]); // 显示当前按下的音符名称 Play_Note(FREQ[note_index], 100); // 播放当前按下的音符 } // 主函数 void main() { TMOD |= 0x01; // 设置定时器0为模式1 TH0 = (65536 - 1000) / 256; // 设置定时器初值 TL0 = (65536 - 1000) % 256; ET0 = 1; // 开启定时器0中断 EA = 1; // 开启总中断 TR0 = 1; // 启动定时器0 LCD_Init(); // 初始化LCD液晶显示屏 while (1) { if (KEY1 == 0) // 按下按键1 { note_index = 0; // 设置当前按下的音符索引 } else if (KEY2 == 0) // 按下按键2 { note_index = 1; // 设置当前按下的音符索引 } else if (KEY3 == 0) // 按下按键3 { note_index = 2; // 设置当前按下的音符索引 } else if (KEY4 == 0) // 按下按键4 { note_index = 3; // 设置当前按下的音符索引 } else if (KEY5 == 0) // 按下按键5 { note_index = 4; // 设置当前按下的音符索引 } else if (KEY6 == 0) // 按下按键6 { note_index = 5; // 设置当前按下的音符索引 } else if (KEY7 == 0) // 按下按键7 { note_index = 6; // 设置当前按下的音符索引 } else if (KEY8 == 0) // 按下按键8 { note_index = 7; // 设置当前按下的音符索引 } else // 没有按下按键 { note_index = -1; // 设置当前按下的音符索引为-1 } } } ``` 在本代码中,我们定义了8个按键和一个音频输出接口,同时定义了LCD液晶显示屏的接口。在主函数中,我们通过循环不断检测按键的状态,并根据按键的状态控制输出对应的音符。同时,在定时器0中断服务函数中,我们获取当前按下的音符名称,通过LCD液晶显示屏显示出来,并播放当前按下的音符。具体实现中,我们使用了一个数组来保存8个音符的频率和名称,使用一个变量来保存当前按下的音符索引,通过改变索引来控制输出的音符。在播放音符的函数中,我们通过定时器控制音符的持续时间,同时通过BEEP口输出高低电平来控制发声。最后,我们在主函数中开启定时器中断和总中断,启动定时器,在循环中等待按键的触发。

相关推荐

最新推荐

recommend-type

STC89C52RC单片机芯片资料

STC89C52RC 单片机芯片资料 STC89C52RC 单片机是宏晶科技推出的新一代高速/低功耗/超强抗干扰的单片机,指令代码完全兼容传统 8051 单片机。STC89C52RC 单片机的主要特性包括: 1. 增强型 8051 单片机,6 时钟/...
recommend-type

如何用AltiumDesigner绘制STC89C51单片机原理图

在学习AltiumDesigner或者51单片机的过程中,当我们要绘制一个...所以,在这里呢,小编将结合自己的经历向大家介绍如何用AltiumDesigner软件来绘制自己的原理图库,并绘制STC89C51单片机的原理图,希望能对大家有所帮助
recommend-type

STC89C52RC单片机用户手册

STC89C52RC 单片机的通用 I/O 口为 32 个,包括 P0/P1/P2/P3/P4 五个 8 位双向 I/O 口,可以满足各种应用场景的需求。 ISP/IAP STC89C52RC 单片机具有 ISP(在系统可编程)/IAP(在应用可编程)功能,无需专用编程...
recommend-type

基于STC89C51单片机的出租车计费器设计

本文以单片机STC89C51 为核心设计一款出租车计费器, 使能够实现里程及对应价格的显示,由于采用芯片的自动定时计数,所以能够准确的计算出总的行车里程并能转换成对应的价格来,这样能够避免出租车司机作弊的可能性...
recommend-type

STC89C51单片机EEPROM读写例程

今天无意间看到STC系列芯片手册上关于片上EEPROM的介绍,狂喜。原来STC单片机本身就有EEPROM的,可惜发现晚了点,不然很多同学的...下午花了点时间看了资料,然后写了个例子程序,本程序在STC89C52RC上测试,运行成功。
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。