用python写基于knn算法对cifar-100数据集分类的程序
时间: 2023-06-20 12:05:27 浏览: 44
好的,下面是基于KNN算法对CIFAR-100数据集分类的Python程序:
首先,需要先安装必要的库,包括numpy、pickle和cPickle,可以使用以下命令进行安装:
```
pip install numpy
```
```
pip install pickle
```
```
pip install cPickle
```
接下来,我们需要加载CIFAR-100数据集,可以使用以下代码:
```python
import numpy as np
import pickle
def unpickle(file):
with open(file, 'rb') as fo:
dict = pickle.load(fo, encoding='bytes')
return dict
def load_cifar100():
train_data = []
train_labels = []
test_data = []
test_labels = []
for i in range(1, 6):
filename = 'cifar-100-python/train' + str(i)
data_dict = unpickle(filename)
train_data.append(data_dict[b'data'])
train_labels.append(data_dict[b'fine_labels'])
train_data = np.concatenate(train_data)
train_labels = np.concatenate(train_labels)
filename = 'cifar-100-python/test'
data_dict = unpickle(filename)
test_data = data_dict[b'data']
test_labels = np.array(data_dict[b'fine_labels'])
return train_data, train_labels, test_data, test_labels
```
接下来,我们需要对数据进行预处理,将像素值归一化到0到1之间,并将数据向量化。代码如下:
```python
def preprocess_data(train_data, test_data):
train_data = train_data.astype('float32')
test_data = test_data.astype('float32')
train_data /= 255
test_data /= 255
train_data = train_data.reshape(train_data.shape[0], -1)
test_data = test_data.reshape(test_data.shape[0], -1)
return train_data, test_data
```
然后,我们需要定义KNN分类器。首先,我们需要计算测试数据与训练数据之间的距离,然后选择K个最近的数据点,并将它们的标签进行统计。最后,我们选择出现最频繁的标签作为预测结果。代码如下:
```python
from collections import Counter
class KNNClassifier:
def __init__(self, k):
self.k = k
def fit(self, X, y):
self.X_train = X
self.y_train = y
def predict(self, X):
num_test = X.shape[0]
y_pred = np.zeros(num_test, dtype = self.y_train.dtype)
for i in range(num_test):
distances = np.sum(np.abs(self.X_train - X[i,:]), axis=1)
nearest_labels = self.y_train[np.argsort(distances)[:self.k]]
c = Counter(nearest_labels)
y_pred[i] = c.most_common(1)[0][0]
return y_pred
```
最后,我们可以使用以下代码进行训练和测试:
```python
train_data, train_labels, test_data, test_labels = load_cifar100()
train_data, test_data = preprocess_data(train_data, test_data)
knn = KNNClassifier(k=5)
knn.fit(train_data, train_labels)
y_pred = knn.predict(test_data)
accuracy = np.mean(y_pred == test_labels)
print('Accuracy:', accuracy)
```
这个程序会输出分类器的准确度。
相关推荐
















