ode = y(x).diff(x, 2) - 4*y(x).diff(x,1) + 3*y(x) - x* math.exp(x) ode_sol = sympy.dsolve(ode)
时间: 2023-09-03 10:08:53 浏览: 86
Matlab 求解微分方程(ODE)
5星 · 资源好评率100%
ode = y(x).diff(x, 2) - 4*y(x).diff(x,1) + 3*y(x) - x* math.exp(x)
ode_sol = sympy.dsolve(ode)
The given differential equation is `ode = y(x).diff(x, 2) - 4*y(x).diff(x,1) + 3*y(x) - x* math.exp(x)`. To solve this equation, we can use the `dsolve` function from the `sympy` library.
Here is the code to solve the differential equation:
```python
import sympy
x = sympy.symbols('x')
y = sympy.Function('y')(x)
ode = y.diff(x, 2) - 4*y.diff(x,1) + 3*y - x* sympy.exp(x)
ode_sol = sympy.dsolve(ode)
print(ode_sol)
```
The `dsolve` function returns the general solution to the differential equation. You can print out `ode_sol` to see the solution.
阅读全文