请修改以上代码以提高准确率
时间: 2024-03-25 22:41:14 浏览: 134
修改代码!!!
以下是一些可能的修改方式,可以尝试以提高代码的准确率:
1. 特征选择:在加载和处理特征时,可以使用一些特征选择方法,例如,使用SelectKBest或SelectFromModel函数,选择最具有代表性和区分度的特征。具体实现可以参考sklearn库中的特征选择模块。
```python
from sklearn.feature_selection import SelectKBest, f_classif
def DE_svm(folder_path, num_features):
# 样本加载处理
de_LDS_feature_dict, de_LDS_label_dict = build_extracted_features_dataset(folder_path, 'de_LDS', 'gamma')
accuracy = 0
for key in de_LDS_feature_dict.keys():
print('当前处理到 experiment_{}'.format(key))
cur_feature = de_LDS_feature_dict[key]
cur_label = de_LDS_label_dict[key]
train_feature = []
train_label = []
test_feature = []
test_label = []
for trial in cur_feature.keys():
if int(trial) < 10:
train_feature.extend(cur_feature[trial])
train_label.extend(cur_label[trial])
else:
test_feature.extend(cur_feature[trial])
test_label.extend(cur_label[trial])
# 特征选择
selector = SelectKBest(f_classif, k=num_features)
selector.fit(train_feature, train_label)
train_feature = selector.transform(train_feature)
test_feature = selector.transform(test_feature)
# 定义 svm 分类器
svc_classifier = svm.SVC(C=0.8, kernel='rbf')
svc_classifier.fit(train_feature, train_label)
predict_label = svc_classifier.predict(test_feature)
print(confusion_matrix(test_label, predict_label))
print(classification_report(test_label, predict_label))
cur_accuracy = svc_classifier.score(test_feature, test_label)
accuracy += cur_accuracy
print('当前 experiment 的 accuracy 为:{}%'.format(100*cur_accuracy))
print('所有 experiment 上的平均 accuracy 为:{}%'.format(100*accuracy / len(de_LDS_feature_dict.keys())))
```
2. 超参数优化:可以使用GridSearchCV或RandomizedSearchCV函数,对SVM模型的超参数进行优化。例如,可以设置不同的C值和kernel函数,选择最优的参数组合。以下是使用GridSearchCV进行超参数优化的示例代码:
```python
from sklearn.model_selection import GridSearchCV
def DE_svm(folder_path, num_features):
# 样本加载处理
de_LDS_feature_dict, de_LDS_label_dict = build_extracted_features_dataset(folder_path, 'de_LDS', 'gamma')
accuracy = 0
for key in de_LDS_feature_dict.keys():
print('当前处理到 experiment_{}'.format(key))
cur_feature = de_LDS_feature_dict[key]
cur_label = de_LDS_label_dict[key]
train_feature = []
train_label = []
test_feature = []
test_label = []
for trial in cur_feature.keys():
if int(trial) < 10:
train_feature.extend(cur_feature[trial])
train_label.extend(cur_label[trial])
else:
test_feature.extend(cur_feature[trial])
test_label.extend(cur_label[trial])
# 特征选择
selector = SelectKBest(f_classif, k=num_features)
selector.fit(train_feature, train_label)
train_feature = selector.transform(train_feature)
test_feature = selector.transform(test_feature)
# 超参数优化
param_grid = {'C': [0.1, 1, 10], 'kernel': ['linear', 'rbf', 'poly']}
svc_classifier = svm.SVC()
clf = GridSearchCV(svc_classifier, param_grid)
clf.fit(train_feature, train_label)
print("Best parameters set found on development set:")
print(clf.best_params_)
predict_label = clf.predict(test_feature)
print(confusion_matrix(test_label, predict_label))
print(classification_report(test_label, predict_label))
cur_accuracy = clf.score(test_feature, test_label)
accuracy += cur_accuracy
print('当前 experiment 的 accuracy 为:{}%'.format(100*cur_accuracy))
print('所有 experiment 上的平均 accuracy 为:{}%'.format(100*accuracy / len(de_LDS_feature_dict.keys())))
```
3. 数据增强:可以使用imgaug库对图像进行增强,例如,随机旋转、翻转、缩放等。以下是对代码进行数据增强的示例代码:
```python
import imgaug.augmenters as iaa
def DE_svm(folder_path, num_features):
# 样本加载处理
de_LDS_feature_dict, de_LDS_label_dict = build_extracted_features_dataset(folder_path, 'de_LDS', 'gamma')
accuracy = 0
for key in de_LDS_feature_dict.keys():
print('当前处理到 experiment_{}'.format(key))
cur_feature = de_LDS_feature_dict[key]
cur_label = de_LDS_label_dict[key]
train_feature = []
train_label = []
test_feature = []
test_label = []
for trial in cur_feature.keys():
if int(trial) < 10:
train_feature.extend(cur_feature[trial])
train_label.extend(cur_label[trial])
else:
test_feature.extend(cur_feature[trial])
test_label.extend(cur_label[trial])
# 数据增强
seq = iaa.Sequential([
iaa.Affine(rotate=(-25, 25)),
iaa.Flipud(0.5),
iaa.Fliplr(0.5),
iaa.Scale((0.5, 1.5))
])
train_feature_aug = seq.augment_images(train_feature)
train_label_aug = train_label * len(seq.augmentables)
# 特征选择
selector = SelectKBest(f_classif, k=num_features)
selector.fit(train_feature_aug, train_label_aug)
train_feature = selector.transform(train_feature_aug)
test_feature = selector.transform(test_feature)
# 超参数优化
param_grid = {'C': [0.1, 1, 10], 'kernel': ['linear', 'rbf', 'poly']}
svc_classifier = svm.SVC()
clf = GridSearchCV(svc_classifier, param_grid)
clf.fit(train_feature, train_label_aug)
print("Best parameters set found on development set:")
print(clf.best_params_)
predict_label = clf.predict(test_feature)
print(confusion_matrix(test_label, predict_label))
print(classification_report(test_label, predict_label))
cur_accuracy = clf.score(test_feature, test_label)
accuracy += cur_accuracy
print('当前 experiment 的 accuracy 为:{}%'.format(100*cur_accuracy))
print('所有 experiment 上的平均 accuracy 为:{}%'.format(100*accuracy / len(de_LDS_feature_dict.keys())))
```
需要注意的是,以上代码仅供参考,具体的修改方式需要根据实际情况进行测试和分析。
阅读全文