torch使用vgg16搭建图片识别模型,并使用本地的测试集和训练集进行训练
时间: 2024-02-03 13:03:59 浏览: 77
好的,我可以帮你解决这个问题。首先,你需要按照上一个问题中的步骤,使用VGG16模型训练一个图像分类器,并将训练好的模型保存下来。
然后,你需要使用本地的训练集和测试集来训练模型。以下是一个简单的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, models, transforms
# 设置数据集路径
train_dir = "/path/to/your/train/data"
test_dir = "/path/to/your/test/data"
# 定义数据转换
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'test': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
# 加载数据集
train_dataset = datasets.ImageFolder(train_dir, data_transforms['train'])
test_dataset = datasets.ImageFolder(test_dir, data_transforms['test'])
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=4)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=False, num_workers=4)
# 加载VGG16模型
model = models.vgg16(pretrained=True)
# 冻结卷积层的参数
for param in model.features.parameters():
param.requires_grad = False
# 替换分类层
model.classifier = nn.Sequential(
nn.Linear(25088, 4096),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(4096, 4096),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(4096, len(train_dataset.classes))
)
# 训练模型
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.classifier.parameters(), lr=0.001, momentum=0.9)
num_epochs = 10
for epoch in range(num_epochs):
train_loss = 0.0
train_acc = 0.0
# 训练模型
model.train()
for images, labels in train_loader:
images = images.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item() * images.size(0)
_, preds = torch.max(outputs, 1)
train_acc += torch.sum(preds == labels.data)
train_loss = train_loss / len(train_dataset)
train_acc = train_acc / len(train_dataset)
# 测试模型
model.eval()
test_loss = 0.0
test_acc = 0.0
with torch.no_grad():
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
test_loss += loss.item() * images.size(0)
_, preds = torch.max(outputs, 1)
test_acc += torch.sum(preds == labels.data)
test_loss = test_loss / len(test_dataset)
test_acc = test_acc / len(test_dataset)
print('Epoch [{}/{}], Train Loss: {:.4f}, Train Acc: {:.4f}, Test Loss: {:.4f}, Test Acc: {:.4f}'
.format(epoch+1, num_epochs, train_loss, train_acc, test_loss, test_acc))
# 保存模型
torch.save(model.state_dict(), 'vgg16_model.pth')
```
这个示例代码中,我们首先定义了训练集和测试集的路径,并定义了数据转换函数。然后使用`ImageFolder`类加载本地数据集,接着使用`vgg16`函数加载预训练模型。接着冻结卷积层的参数,以便只训练全连接层。最后训练模型并保存模型权重。
阅读全文