请写一段代码使用TCN根据风速、风向、温度、湿度、气压、空气密度数据预测风电场输出功率
时间: 2023-10-01 10:04:54 浏览: 77
风电功率预测
很高兴为您提供帮助!以下是使用TCN模型预测风电场输出功率的代码示例:
```
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv1D
from keras.optimizers import Adam
from keras.callbacks import EarlyStopping
from tcn import TCN
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
# 准备数据
data = pd.read_csv('wind_energy_data.csv') # 假设数据已经存在
X = data[['wind_speed', 'wind_direction', 'temperature', 'humidity', 'pressure', 'air_density']].values
y = data['power_output'].values
scaler = StandardScaler()
X = scaler.fit_transform(X)
y = scaler.fit_transform(y.reshape(-1, 1)).reshape(1, -1)[0]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建模型
model = Sequential()
model.add(Conv1D(filters=64, kernel_size=5, activation='relu', input_shape=(X_train.shape[1], 1)))
model.add(TCN(nb_filters=64, kernel_size=2, dropout_rate=0.2))
model.add(Flatten())
model.add(Dropout(0.5))
model.add(Dense(1, activation='linear'))
optimizer = Adam(lr=0.001, decay=1e-6)
model.compile(loss='mse', optimizer=optimizer)
early_stopping = EarlyStopping(monitor='val_loss', patience=5, verbose=1)
# 训练模型
model.fit(X_train.reshape((X_train.shape[0], X_train.shape[1], 1)),
y_train,
batch_size=64,
epochs=50,
validation_split=0.2,
callbacks=[early_stopping])
# 评估模型
train_loss = model.evaluate(X_train.reshape((X_train.shape[0], X_train.shape[1], 1)),
y_train,
verbose=0)
test_loss = model.evaluate(X_test.reshape((X_test.shape[0], X_test.shape[1], 1)),
y_test,
verbose=0)
print(f'Train loss: {train_loss:.4f}')
print(f'Test loss: {test_loss:.4f}')
```
在这个例子中,我们使用了一个卷积神经网络(CNN)和一个TCN层来对多变量时间序列数据进行建模。数据集中包括风速、风向、温度、湿度、气压、空气密度等多个特征,以及对应的风电场输出功率。我们对数据进行标准化处理,然后将其输入到模型中进行训练并评估模型。如果您需要更详细的说明或帮助,请告诉我,我会尽力提供帮助。
阅读全文