使用python语言制作一个可以封装YOLOv5的可视化界面代码
时间: 2024-02-21 19:58:44 浏览: 95
好的,下面是一份基于Python语言和PyQt5库的YOLOv5可视化界面代码示例:
```python
import sys
import os
import cv2
import numpy as np
from PyQt5.QtCore import Qt
from PyQt5.QtGui import QImage, QPixmap
from PyQt5.QtWidgets import QApplication, QWidget, QLabel, QPushButton, QFileDialog
from yolov5 import YOLOv5Detector # 假设YOLOv5Detector是你自己实现的YOLOv5检测器类
class YOLOv5Demo(QWidget):
def __init__(self):
super().__init__()
self.initUI()
def initUI(self):
# 设置窗口标题和大小
self.setWindowTitle('YOLOv5 Demo')
self.setGeometry(100, 100, 800, 600)
# 创建标签和按钮控件
self.image_label = QLabel(self)
self.image_label.setAlignment(Qt.AlignCenter)
self.image_label.resize(600, 450)
self.detect_btn = QPushButton('Detect', self)
self.detect_btn.move(650, 100)
self.detect_btn.resize(100, 50)
self.detect_btn.clicked.connect(self.detect)
self.open_btn = QPushButton('Open Image', self)
self.open_btn.move(650, 200)
self.open_btn.resize(100, 50)
self.open_btn.clicked.connect(self.open_image)
# 初始化YOLOv5检测器
self.detector = YOLOv5Detector()
# 显示窗口
self.show()
def open_image(self):
# 打开文件选择对话框
fname, _ = QFileDialog.getOpenFileName(self, 'Open Image', '.', 'Image files (*.jpg *.jpeg *.png *.bmp)')
if fname:
# 读取图像文件并显示
image = cv2.imread(fname)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
self.show_image(image)
def detect(self):
# 获取当前显示的图像
image = self.get_image()
if image is None:
return
# 进行YOLOv5检测
results = self.detector.detect(image)
# 在图像上绘制检测结果
for result in results:
label = result['label']
score = result['score']
xmin, ymin, xmax, ymax = result['bbox']
cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
cv2.putText(image, f'{label}:{score:.2f}', (xmin, ymin - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# 显示带有检测结果的图像
self.show_image(image)
def get_image(self):
# 从标签控件中获取当前显示的图像
pixmap = self.image_label.pixmap()
if pixmap is not None:
return pixmap.toImage().constBits().asarray(
pixmap.width() * pixmap.height() * pixmap.depth() // 8).reshape((pixmap.height(), pixmap.width(), pixmap.depth() // 8))[:, :, :3]
else:
return None
def show_image(self, image):
# 将图像转换为QImage格式并显示在标签控件中
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
h, w, c = image.shape
qimage = QImage(image.data, w, h, w * c, QImage.Format_RGB888)
pixmap = QPixmap.fromImage(qimage)
scaled_pixmap = pixmap.scaled(self.image_label.width(), self.image_label.height(), Qt.KeepAspectRatio)
self.image_label.setPixmap(scaled_pixmap)
if __name__ == '__main__':
app = QApplication(sys.argv)
demo = YOLOv5Demo()
sys.exit(app.exec_())
```
这份代码实现了一个简单的YOLOv5可视化界面,用户可以通过点击“Open Image”按钮打开一张图像文件,然后点击“Detect”按钮进行YOLOv5检测,并在图像上绘制检测结果。其中`YOLOv5Detector`类是一个假定的类名,需要根据实际情况替换为你自己实现的YOLOv5检测器类。
阅读全文