python中mktime

时间: 2023-07-25 21:33:22 浏览: 136
Python中的mktime函数可以将一个时间元组(struct_time)转换成对应的时间戳(浮点数表示的秒数)。具体语法如下: ```python time.mktime(t) ``` 其中,t是时间元组,包含了年、月、日、时、分、秒等信息。mktime函数返回一个浮点数表示的时间戳,表示从1970年1月1日 00:00:00 UTC到t所表示时间的秒数。需要注意的是,mktime函数所返回的时间戳是本地时间(即时区所在的标准时间)。 下面是一个示例代码: ```python import time # 获取当前时间的时间元组 t = time.localtime() # 将时间元组转换成时间戳 timestamp = time.mktime(t) print("时间元组:", t) print("时间戳:", timestamp) ``` 输出结果如下: ``` 时间元组: time.struct_time(tm_year=2021, tm_mon=4, tm_mday=15, tm_hour=16, tm_min=22, tm_sec=20, tm_wday=3, tm_yday=105, tm_isdst=0) 时间戳: 1618500140.0 ``` 可以看到,将当前时间的时间元组转换成时间戳后,得到的结果是一个浮点数,表示从1970年1月1日 00:00:00到当前时间的秒数。
相关问题

python mktime

`mktime` 是 `time` 模块中的一个函数,用于将一个时间元组(struct_time)转换为从 1970 年 1 月 1 日以来的秒数(UNIX 时间戳)。它的语法如下: ```python import time timestamp = time.mktime(time_tuple) ``` 其中,`time_tuple` 是一个包含了年、月、日、时、分、秒等时间信息的元组。`mktime` 函数会将这个时间元组转换为一个浮点数型的秒数,表示从 1970 年 1 月 1 日 0 时 0 分 0 秒开始到该时间的秒数。 需要注意的是,`mktime` 函数会根据本地时区的偏移进行计算,因此结果可能受到时区影响。如果需要使用 UTC 时间,请使用 `calendar.timegm` 函数代替。

python time.mktime

### 回答1: time.mktime() 是 Python 中的一个函数,用于将时间元组转换为时间戳。时间戳是指从 197 年 1 月 1 日 00:00:00 UTC 到指定时间的秒数。该函数的参数是一个时间元组,包含年、月、日、时、分、秒等信息。函数返回值是一个浮点数,表示指定时间的时间戳。 ### 回答2: Python中的time.mktime()函数是用来将时间元组(包含时间信息的数据结构)转换为时间戳的函数。时间戳是一个浮点数,表示从1970年1月1日0时0分0秒的UTC时间开始,到当前时间的秒数。时间戳的整数部分表示从1970年开始的秒数,小数部分表示微秒数。 time.mktime()函数的使用非常简单,只需要传入一个时间元组对象即可。时间元组包含了年、月、日、小时、分钟、秒、周几、一年中的第几天等信息。 例如,以下代码演示了如何使用time.mktime()函数将一个时间元组转换为时间戳: import time tup = (2021, 9, 1, 10, 30, 0, 2, 0, 0) timestamp = time.mktime(tup) print("时间戳为:", timestamp) 输出结果为:“时间戳为:1630475400.0”。这表示从1970年1月1日0时0分0秒开始到2021年9月1日10时30分0秒的UTC时间为1630475400秒。 需要注意的是,time.mktime()函数默认使用本地时区,如果需要使用UTC时间,则需要使用time.gmtime()函数将时间元组转换为UTC时间后再调用time.mktime()函数。 总之,time.mktime()函数是在Python中处理时间相关操作时非常常用的一个函数,掌握它的使用方法可以方便我们进行时间计算和处理。 ### 回答3: Python中的time模块提供了许多函数来操作时间和日期。其中,time.mktime() 函数用于将本地时间转换为时间戳。时间戳是自 1970 年 1 月 1 日 00:00:00 UTC(协调世界时)以来的秒数。换句话说,它是从 Unix 纪元(称为 Unix 时间或 POSIX 时间)开始的秒数。 函数原型如下: time.mktime(t) 其中 t 为一个 struct_time 类型的时间元组,它表示了本地时间。该元组的 9 个元素分别为: struct_time( tm_year=2021, # 年份 tm_mon=3, # 月份 tm_mday=18, # 日 tm_hour=13, # 小时 tm_min=33, # 分 tm_sec=23, # 秒 tm_wday=3, # 星期(0-6,0表示星期一) tm_yday=77, # 一年中的第几天(1-366) tm_isdst=-1 # 是否为夏令时,默认-1表示自动判断 ) 函数返回值为一个浮点数,代表了时间元组所表示的时间的时间戳。 例如,以下代码将本地时间元组转换为时间戳: import time t = (2021, 3, 18, 13, 33, 23, 3, 77, -1) timestamp = time.mktime(t) print(timestamp) 输出为: 1616068403.0 需要注意的是,time.mktime() 函数处理的时间是本地时间,而不是 UTC 时间。因此,当系统的时区发生变化时,该函数的结果也会相应地改变。为了避免这种情况,可以使用 time.gmtime() 函数将时间转换为 UTC 时间,再使用 time.mktime() 函数将它转换为时间戳。
阅读全文

相关推荐

txt
static __time64_t __cdecl _make__time64_t ( struct tm *tb, int ultflag ) { __time64_t tmptm1, tmptm2, tmptm3; struct tm tbtemp; long dstbias = 0; long timezone = 0; _VALIDATE_RETURN( ( tb != NULL ), EINVAL, ( ( __time64_t )( -1 ) ) ) /* * First, make sure tm_year is reasonably close to being in range. */ if ( ((tmptm1 = tb->tm_year) _MAX_YEAR64 + 1) ) goto err_mktime; /* * Adjust month value so it is in the range 0 - 11. This is because * we don't know how many days are in months 12, 13, 14, etc. */ if ( (tb->tm_mon tm_mon > 11) ) { tmptm1 += (tb->tm_mon / 12); if ( (tb->tm_mon %= 12) tm_mon += 12; tmptm1--; } /* * Make sure year count is still in range. */ if ( (tmptm1 _MAX_YEAR64 + 1) ) goto err_mktime; } /***** HERE: tmptm1 holds number of elapsed years *****/ /* * Calculate days elapsed minus one, in the given year, to the given * month. Check for leap year and adjust if necessary. */ tmptm2 = _days[tb->tm_mon]; if ( _IS_LEAP_YEAR(tmptm1) && (tb->tm_mon > 1) ) tmptm2++; /* * Calculate elapsed days since base date (midnight, 1/1/70, UTC) * * * 365 days for each elapsed year since 1970, plus one more day for * each elapsed leap year. no danger of overflow because of the range * check (above) on tmptm1. */ tmptm3 = (tmptm1 - _BASE_YEAR) * 365 + _ELAPSED_LEAP_YEARS(tmptm1); /* * elapsed days to current month (still no possible overflow) */ tmptm3 += tmptm2; /* * elapsed days to current date. */ tmptm1 = tmptm3 + (tmptm2 = (__time64_t)(tb->tm_mday)); /***** HERE: tmptm1 holds number of elapsed days *****/ /* * Calculate elapsed hours since base date */ tmptm2 = tmptm1 * 24; tmptm1 = tmptm2 + (tmptm3 = (__time64_t)tb->tm_hour); /***** HERE: tmptm1 holds number of elapsed hours *****/ /* * Calculate elapsed minutes since base date */ tmptm2 = tmptm1 * 60; tmptm1 = tmptm2 + (tmptm3 = (__time64_t)tb->tm_min); /***** HERE: tmptm1 holds number of elapsed minutes *****/ /* * Calculate elapsed seconds since base date */ tmptm2 = tmptm1 * 60; tmptm1 = tmptm2 + (tmptm3 = (__time64_t)tb->tm_sec); /***** HERE: tmptm1 holds number of elapsed seconds *****/ if ( ultflag ) { /* * Adjust for timezone. No need to check for overflow since * localtime() will check its arg value */ __tzset(); _ERRCHECK(_get_dstbias(&dstbias;)); _ERRCHECK(_get_timezone(&timezone;)); tmptm1 += timezone; /* * Convert this second count back into a time block structure. * If localtime returns NULL, return an error. */ if ( _localtime64_s(&tbtemp;, &tmptm1;) != 0 ) goto err_mktime; /* * Now must compensate for DST. The ANSI rules are to use the * passed-in tm_isdst flag if it is non-negative. Otherwise, * compute if DST applies. Recall that tbtemp has the time without * DST compensation, but has set tm_isdst correctly. */ if ( (tb->tm_isdst > 0) || ((tb->tm_isdst 0)) ) { tmptm1 += dstbias; if ( _localtime64_s(&tbtemp;, &tmptm1;) != 0 ) goto err_mktime; } } else { if ( _gmtime64_s(&tbtemp;, &tmptm1;) != 0) goto err_mktime; } /***** HERE: tmptm1 holds number of elapsed seconds, adjusted *****/ /***** for local time if requested *****/ *tb = tbtemp; return tmptm1; err_mktime: /* * All errors come to here */ errno = EINVAL; return (__time64_t)(-1); }

大家在看

recommend-type

840D的PLC功能块FB2和FB3读写NC系统变量

840D的PLC功能块FB2和FB3读写NC系统变量
recommend-type

看nova-scheduler如何选择计算节点-每天5分钟玩转OpenStack

本节重点介绍nova-scheduler的调度机制和实现方法:即解决如何选择在哪个计算节点上启动instance的问题。创建Instance时,用户会提出资源需求,例如CPU、内存、磁盘各需要多少。OpenStack将这些需求定义在flavor中,用户只需要指定用哪个flavor就可以了。可用的flavor在System->Flavors中管理。Flavor主要定义了VCPU,RAM,DISK和Metadata这四类。nova-scheduler会按照flavor去选择合适的计算节点。VCPU,RAM,DISK比较好理解,而Metatdata比较有意思,我们后面会具体讨论。下面介绍nova-s
recommend-type

不平衡学习的自适应合成采样方法ADASYN附Matlab代码.zip

1.版本:matlab2014/2019a,内含运行结果,不会运行可私信 2.领域:智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多内容可点击博主头像 3.内容:标题所示,对于介绍可点击主页搜索博客 4.适合人群:本科,硕士等教研学习使用 5.博客介绍:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可si信
recommend-type

易语言-momo/陌陌/弹幕/优雅看直播

陌陌直播弹幕解析源码。
recommend-type

机器视觉选型计算概述-不错的总结

机器视觉选型计算概述-不错的总结

最新推荐

recommend-type

Python中常用的Python time模块常用函数

Python中的time模块是处理时间操作的核心模块,提供了丰富的函数来帮助开发者进行时间相关的计算和格式化。以下将详细解释在Python中常用的time模块函数: 1. **time.time()** 函数: - 定义:返回自1970年1月1日...
recommend-type

Python格式化日期时间操作示例

在Python编程中,处理日期和时间是一项常见的任务,这通常涉及到获取、转换、格式化和比较日期时间。在Python中,我们可以使用内置的`time`模块来实现这些功能。下面我们将深入探讨`time`模块的主要知识点,并通过...
recommend-type

Python MySQL 日期时间格式化作为参数的操作

在Python中与MySQL数据库交互时,处理日期和时间是一项常见的任务。本篇将深入探讨如何在Python中格式化日期时间并将其作为参数传递给MySQL查询。首先,理解MySQL中的日期时间格式至关重要。在示例中,`start_time` ...
recommend-type

使用Python实现一个简单的项目监控

在本文中,我们将探讨如何使用Python来实现一个简单的项目监控系统,主要针对接口系统的稳定性进行监控,以便在出现问题时能够快速响应。这个监控系统的主要功能包括:从MySQL日志库中查询错误日志、发送电子邮件...
recommend-type

python 获取毫秒数,计算调用时长的方法

在Python编程中,有时我们需要对代码执行的时间进行度量,特别是在优化性能或分析代码效率时。获取毫秒数并计算函数调用时长是实现这一目标的重要手段。本篇文章将详细探讨如何在Python中实现这一功能。 首先,...
recommend-type

降低成本的oracle11g内网安装依赖-pdksh-5.2.14-1.i386.rpm下载

资源摘要信息: "Oracle数据库系统作为广泛使用的商业数据库管理系统,其安装过程较为复杂,涉及到多个预安装依赖包的配置。本资源提供了Oracle 11g数据库内网安装所必需的预安装依赖包——pdksh-5.2.14-1.i386.rpm,这是一种基于UNIX系统使用的命令行解释器,即Public Domain Korn Shell。对于Oracle数据库的安装,pdksh是必须的预安装组件,其作用是为Oracle安装脚本提供命令解释的环境。" Oracle数据库的安装与配置是一个复杂的过程,需要诸多组件的协同工作。在Linux环境下,尤其在内网环境中安装Oracle数据库时,可能会因为缺少某些关键的依赖包而导致安装失败。pdksh是一个自由软件版本的Korn Shell,它基于Bourne Shell,同时引入了C Shell的一些特性。由于Oracle数据库对于Shell脚本的兼容性和可靠性有较高要求,因此pdksh便成为了Oracle安装过程中不可或缺的一部分。 在进行Oracle 11g的安装时,如果没有安装pdksh,安装程序可能会报错或者无法继续。因此,确保pdksh已经被正确安装在系统上是安装Oracle的第一步。根据描述,这个特定的pdksh版本——5.2.14,是一个32位(i386架构)的rpm包,适用于基于Red Hat的Linux发行版,如CentOS、RHEL等。 运维人员在进行Oracle数据库安装时,通常需要下载并安装多个依赖包。在描述中提到,下载此依赖包的价格已被“打下来”,暗示了市场上其他来源可能提供的费用较高,这可能是因为Oracle数据库的软件和依赖包通常价格不菲。为了降低IT成本,本文档提供了实际可行的、经过测试确认可用的资源下载途径。 需要注意的是,仅仅拥有pdksh-5.2.14-1.i386.rpm文件是不够的,还要确保系统中已经安装了正确的依赖包管理工具,并且系统的软件仓库配置正确,以便于安装rpm包。在安装rpm包时,通常需要管理员权限,因此可能需要使用sudo或以root用户身份来执行安装命令。 除了pdksh之外,Oracle 11g安装可能还需要其他依赖,如系统库文件、开发工具等。如果有其他依赖需求,可以参考描述中提供的信息,点击相关者的头像,访问其提供的其他资源列表,以找到所需的相关依赖包。 总结来说,pdksh-5.2.14-1.i386.rpm包是Oracle 11g数据库内网安装过程中的关键依赖之一,它的存在对于运行Oracle安装脚本是必不可少的。当运维人员面对Oracle数据库安装时,应当检查并确保所有必需的依赖组件都已准备就绪,而本文档提供的资源将有助于降低安装成本,并确保安装过程的顺利进行。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

云计算术语全面掌握:从1+X样卷A卷中提炼精华

![云计算术语全面掌握:从1+X样卷A卷中提炼精华](https://ask.qcloudimg.com/http-save/yehe-1475574/696453895d391e6b0f0e27455ef79c8b.jpeg) # 摘要 本文全面解析了云计算的基础概念,并深入理解了云计算服务模型,包括IaaS、PaaS和SaaS的区别及其应用。文章详细探讨了云计算部署模型,包括公有云、私有云及混合云的架构优势和选择策略。同时,本文也实践应用了云计算的关键技术,如虚拟化、容器技术以及云安全策略。此外,文章探讨了云服务管理与监控的工具、最佳实践、性能监控以及合规性和可持续发展问题。最后,本文通
recommend-type

. 索读取⼀幅图像,让该图像拼接⾃身图像,分别⽤⽔ 平和垂直 2 种。要求运⾏结果弹窗以⾃⼰的名字全拼命名。

在Python中,我们可以使用PIL(Pillow)库来处理图像并实现您所描述的功能。首先,你需要安装PIL库,如果还没有安装,可以使用pip install pillow命令。以下是简单的步骤来实现这个功能: 1. 打开图像文件: ```python from PIL import Image def open_image_and_display(image_path): img = Image.open(image_path) ``` 2. 创建一个新的空白图像,用于存放拼接后的图像: ```python def create_concat_image(img, directi
recommend-type

Java基础实验教程Lab1解析

资源摘要信息:"Java Lab1实践教程" 本次提供的资源是一个名为"Lab1"的Java实验室项目,旨在帮助学习者通过实践来加深对Java编程语言的理解。从给定的文件信息来看,该项目的名称为"Lab1",它的描述同样是"Lab1",这表明这是一个基础的实验室练习,可能是用于介绍Java语言或设置一个用于后续实践的开发环境。文件列表中的"Lab1-master"表明这是一个主版本的压缩包,包含了多个文件和可能的子目录结构,用于确保完整性和便于版本控制。 ### Java知识点详细说明 #### 1. Java语言概述 Java是一种高级的、面向对象的编程语言,被广泛用于企业级应用开发。Java具有跨平台的特性,即“一次编写,到处运行”,这意味着Java程序可以在支持Java虚拟机(JVM)的任何操作系统上执行。 #### 2. Java开发环境搭建 对于一个Java实验室项目,首先需要了解如何搭建Java开发环境。通常包括以下步骤: - 安装Java开发工具包(JDK)。 - 配置环境变量(JAVA_HOME, PATH)以确保可以在命令行中使用javac和java命令。 - 使用集成开发环境(IDE),如IntelliJ IDEA, Eclipse或NetBeans,这些工具可以简化编码、调试和项目管理过程。 #### 3. Java基础语法 在Lab1中,学习者可能需要掌握一些Java的基础语法,例如: - 数据类型(基本类型和引用类型)。 - 变量的声明和初始化。 - 控制流语句,包括if-else, for, while和switch-case。 - 方法的定义和调用。 - 数组的使用。 #### 4. 面向对象编程概念 Java是一种面向对象的编程语言,Lab1项目可能会涉及到面向对象编程的基础概念,包括: - 类(Class)和对象(Object)的定义。 - 封装、继承和多态性的实现。 - 构造方法(Constructor)的作用和使用。 - 访问修饰符(如private, public)的使用,以及它们对类成员访问控制的影响。 #### 5. Java标准库使用 Java拥有一个庞大的标准库,Lab1可能会教授学习者如何使用其中的一些基础类和接口,例如: - 常用的java.lang包下的类,如String, Math等。 - 集合框架(Collections Framework),例如List, Set, Map等接口和实现类。 - 异常处理机制,包括try-catch块和异常类层次结构。 #### 6. 实验室项目实践 实践是学习编程最有效的方式之一。Lab1项目可能包含以下类型的实际练习: - 创建一个简单的Java程序,比如一个控制台计算器。 - 实现基本的数据结构和算法,如链表、排序和搜索。 - 解决特定的问题,比如输入处理和输出格式化。 #### 7. 项目组织和版本控制 "Lab1-master"文件名暗示该项目可能采用Git作为版本控制系统。在项目实践中,学习者可能需要了解: - 如何使用Git命令进行版本控制。 - 分支(Branch)的概念和合并(Merge)的策略。 - 创建和管理Pull Request来协作和审查代码。 #### 8. 代码规范和文档 良好的代码规范和文档对于保持代码的可读性和可维护性至关重要。Lab1项目可能会强调: - 遵循Java编码标准,例如命名约定、注释习惯。 - 编写文档注释(Javadoc),以便自动生成API文档。 通过Lab1项目的实践和指导,学习者能够逐步掌握Java编程语言的核心知识,并为后续更深入的学习和项目开发打下坚实的基础。