mask = mask.cuda() if use_cuda else mask # [64, 6, 256, 128] mask_i = mask.argmax(dim=1).unsqueeze(dim=1) # [64, 1, 256, 128] mask_i = mask_i.expand_as(img) img_a = copy.deepcopy(img)
时间: 2024-04-01 22:33:33 浏览: 152
这段代码是在进行图像处理,其中mask是一个张量,表示图像的掩码信息,use_cuda表示是否使用GPU加速,如果是,则将mask张量转移到GPU上进行计算。接着,通过argmax函数获取mask张量在第一个维度上的最大值所在的位置,并在此基础上增加一个维度,从而得到一个新的张量mask_i,表示掩码信息中最大值所在的位置。然后,通过expand_as函数将mask_i张量的形状扩展成与图像img相同的形状,最后将img赋值给img_a,并返回img_a。
相关问题
class NLayerDiscriminator(nn.Module): def init(self, input_nc=3, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, use_parallel=True): super(NLayerDiscriminator, self).init() self.use_parallel = use_parallel if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d self.conv1 = nn.Conv2d(input_nc, ndf, kernel_size=3, padding=1) self.conv_offset1 = nn.Conv2d(input_nc, 18, kernel_size=3, stride=1, padding=1) init_offset1 = torch.Tensor(np.zeros([18, input_nc, 3, 3])) self.conv_offset1.weight = torch.nn.Parameter(init_offset1) # 初始化为0 self.conv_mask1 = nn.Conv2d(input_nc, 9, kernel_size=3, stride=1, padding=1) init_mask1 = torch.Tensor(np.zeros([9, input_nc, 3, 3]) + np.array([0.5])) self.conv_mask1.weight = torch.nn.Parameter(init_mask1) # 初始化为0.5 kw = 4 padw = int(np.ceil((kw-1)/2)) nf_mult = 1 for n in range(1, n_layers): nf_mult_prev = nf_mult nf_mult = min(2n, 8) self.sequence = [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2n_layers, 8) self.sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] self.sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] if use_sigmoid: self.sequence += [nn.Sigmoid()] def forward(self, input): offset1 = self.conv_offset1(input) mask1 = torch.sigmoid(self.conv_mask1(input)) sequence1 = [ torchvision.ops.deform_conv2d(input=input, offset=offset1, weight=self.conv1.weight, mask=mask1, padding=(1, 1)) ] sequence = sequence1 + self.sequence self.model = nn.Sequential(*sequence) return self.model(input),上述代码出现问题:TypeError: torch.cuda.FloatTensor is not a Module subclass,如何修改
这个错误一般出现在将张量作为模型输入时。需要将张量包装成一个 `nn.Parameter` 对象,或者将其转换为一个 `nn.Module` 对象。你可以尝试将最后一行代码修改为以下内容:
```python
return nn.Sequential(*sequence)(input)
```
这里直接将 `nn.Sequential` 对象应用于输入张量 `input`,然后返回模型的输出。这样就可以避免将张量作为模型输入时出现的 `TypeError` 错误。
阅读全文