深度学习训练集验证集代码框架
时间: 2023-11-11 22:00:47 浏览: 150
深度学习模型的训练集和验证集的代码框架一般如下:
```python
import torch
from torch.utils.data import DataLoader, Dataset
from sklearn.model_selection import train_test_split
# 定义数据集类
class MyDataset(Dataset):
def __init__(self, data, labels):
self.data = data
self.labels = labels
def __getitem__(self, index):
return self.data[index], self.labels[index]
def __len__(self):
return len(self.data)
# 加载数据
data = ...
labels = ...
train_data, val_data, train_labels, val_labels = train_test_split(data, labels, test_size=0.2)
# 定义数据加载器
train_dataset = MyDataset(train_data, train_labels)
val_dataset = MyDataset(val_data, val_labels)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32)
# 定义模型和优化器
model = ...
optimizer = ...
# 训练模型
for epoch in range(num_epochs):
for i, (inputs, labels) in enumerate(train_loader):
# 前向传播
outputs = model(inputs)
loss = ...
# 反向传播
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 在验证集上测试模型
with torch.no_grad():
total_correct = 0
total_samples = 0
for inputs, labels in val_loader:
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total_samples += labels.size(0)
total_correct += (predicted == labels).sum().item()
accuracy = total_correct / total_samples
print('Epoch [{}/{}], Loss: {:.4f}, Val Acc: {:.2f}%'.format(epoch+1, num_epochs, loss.item(), accuracy*100))
```
其中,`MyDataset` 类用于定义数据集,`train_test_split` 函数用于将数据集划分为训练集和验证集,`DataLoader` 类用于定义数据加载器,`model` 和 `optimizer` 分别表示模型和优化器。在训练过程中,我们先在训练集上进行训练,然后在验证集上测试模型的性能。
阅读全文