利用lstm进行多步预测的matlab代码
时间: 2023-10-08 17:06:38 浏览: 70
【回归预测-Lstm预测】基于长短期记忆网络LSTM实现电价时间序列单步预测附matlab代码.zip
5星 · 资源好评率100%
Sure! Here's an example of code in MATLAB that uses LSTM (Long Short-Term Memory) to perform multi-step prediction:
```matlab
% Load your dataset and preprocess it
% ...
% Create the LSTM network
numFeatures = size(XTrain, 2); % Number of input features
numResponses = size(YTrain, 2); % Number of output responses
numHiddenUnits = 200; % Number of hidden units in the LSTM layer
layers = [ ...
sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits, 'OutputMode', 'sequence')
fullyConnectedLayer(numResponses)
regressionLayer];
% Set training options
options = trainingOptions('adam', ...
'MaxEpochs', 100, ...
'GradientThreshold', 1, ...
'InitialLearnRate', 0.01, ...
'LearnRateSchedule', 'piecewise', ...
'LearnRateDropPeriod', 20, ...
'LearnRateDropFactor', 0.1, ...
'Verbose', 0);
% Train the LSTM network
net = trainNetwork(XTrain, YTrain, layers, options);
% Perform multi-step prediction
numTimeSteps = size(XTest, 1); % Number of time steps in the test data
miniBatchSize = 1; % Size of the mini-batch
% Initialize the input sequence for prediction
XSeq = XTrain(end, :);
% Initialize the predicted output sequence
YSeq = zeros(numTimeSteps, numResponses);
% Perform multi-step prediction
for i = 1:numTimeSteps
% Predict the next time step
[net, YPred] = predictAndUpdateState(net, XSeq, 'MiniBatchSize', miniBatchSize);
% Update the input sequence for the next prediction
XSeq = [XSeq(2:end, :); YPred];
% Store the predicted output
YSeq(i, :) = YPred;
end
% Plot the predicted and actual output
% ...
```
Please note that you need to replace `XTrain`, `YTrain`, and `XTest` with your own training and testing data. Additionally, you may need to adjust other parameters such as the number of hidden units, learning rate, etc., based on your specific problem and dataset.
阅读全文