残差收缩网络pytorch
时间: 2024-04-29 14:18:05 浏览: 116
残差收缩网络(ResNet)是一种深度学习模型,它通过引入残差块来解决深度神经网络中梯度消失或爆炸的问题。在PyTorch中,ResNet可以通过torchvision.models.resnet模块来实现。
ResNet的核心思想是在网络中引入残差块,即将输入和输出进行相加,使得网络可以通过简单的恒等映射来学习残差。这样的做法可以使得网络更容易训练,同时也可以提高模型的准确率。ResNet中的残差块包括一个跨层连接和两个卷积层,其中跨层连接将输入直接加到输出上。
在PyTorch中,可以使用torchvision.models.resnet来实现ResNet网络。该模块提供了多种不同深度的ResNet模型,可以根据具体应用场景进行选择。同时,该模块还提供了预训练好的ResNet模型,可以直接使用或者在其基础上进行微调。
相关问题
写一段7分类的深度残差收缩网络pytorch代码
import torch
import torch.nn as nn# 定义残差收缩块
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(out_channels)
self.shortcut = nn.Sequential()
if in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out += self.shortcut(x)
return out# 定义深度残差收缩网络
class ResNet(nn.Module):
def __init__(self, num_classes=7):
super(ResNet, self).__init__()
self.in_channels = 64
self.conv1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True)
)
self.layer1 = self.make_layer(ResidualBlock, 64, 2, stride=1)
self.layer2 = self.make_layer(ResidualBlock, 128, 2, stride=2)
self.layer3 = self.make_layer(ResidualBlock, 256, 2, stride=2)
self.layer4 = self.make_layer(ResidualBlock, 512, 2, stride=2)
self.avg_pool = nn.AvgPool2d(7, stride=1)
self.fc = nn.Linear(512, num_classes) def make_layer(self, block, channels, num_blocks, stride):
strides = [stride] + [1] * (num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_channels, channels))
self.in_channels = channels
return nn.Sequential(*layers) def forward(self, x):
out = self.conv1(x)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avg_pool(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out# 构建7分类的深度残差收缩网络
resnet = ResNet(7)
深度残差收缩网络的pytorch代码
以下是深度残差收缩网络的 PyTorch 代码:
```python
import torch
import torch.nn as nn
class ResidualShrinkageBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1, padding=1, dilation=1,
reduction_ratio=16, last=False):
super(ResidualShrinkageBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride,
padding=padding, dilation=dilation, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1,
padding=padding, dilation=dilation, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.in_channels = in_channels
self.out_channels = out_channels
self.stride = stride
self.padding = padding
self.dilation = dilation
self.last = last
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc1 = nn.Linear(out_channels, out_channels // reduction_ratio)
self.fc2 = nn.Linear(out_channels // reduction_ratio, out_channels)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.last:
out = out
else:
out = self.avg_pool(out)
out = out.view(out.size(0), -1)
out = self.fc1(out)
out = self.relu(out)
out = self.fc2(out)
out = self.sigmoid(out)
out = out.view(out.size(0), out.size(1), 1, 1)
out = out * identity
out += identity
out = self.relu(out)
return out
class ResidualShrinkageNet(nn.Module):
def __init__(self, num_classes=1000):
super(ResidualShrinkageNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(64, 256, 3)
self.layer2 = self._make_layer(256, 512, 4, stride=2)
self.layer3 = self._make_layer(512, 1024, 6, stride=2)
self.layer4 = self._make_layer(1024, 2048, 3, stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(2048, num_classes)
def _make_layer(self, in_channels, out_channels, blocks, stride=1):
layers = []
layers.append(ResidualShrinkageBlock(in_channels, out_channels,
stride=stride, last=True))
for i in range(1, blocks):
layers.append(ResidualShrinkageBlock(out_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
这是一个四层残差结构的 Residual Shrinkage Net,其中每个残差块有一个特殊的缩减层,用于减少冗余特征。可以根据需要调整层数和通道数。
阅读全文