python三维有限元代码
时间: 2023-06-19 19:06:49 浏览: 145
三维有限元方法是非常复杂的数值计算方法,需要涉及许多数学和物理概念。在 Python 中,我们可以使用许多库来实现三维有限元代码,其中最常用的是 NumPy、SciPy、Matplotlib 等。下面是一个简单的示例代码:
```python
import numpy as np
from scipy.sparse import csr_matrix
from scipy.sparse.linalg import spsolve
class FEM3D:
def __init__(self, nodes, elems, loads, E, nu):
self.nodes = nodes # 节点矩阵
self.elems = elems # 单元矩阵
self.loads = loads # 荷载矩阵
self.E = E # 弹性模量
self.nu = nu # 泊松比
self.nnodes = len(nodes) # 节点数
self.nelems = len(elems) # 单元数
self.ndof = 3 # 自由度数
self.edof = np.arange(self.ndof * 4).reshape((4, self.ndof)) # 单元自由度矩阵
self.K = np.zeros((self.nnodes * self.ndof, self.nnodes * self.ndof)) # 刚度矩阵
self.F = np.zeros((self.nnodes * self.ndof, 1)) # 荷载矩阵
self.U = np.zeros((self.nnodes * self.ndof, 1)) # 位移矩阵
def _get_elastic_matrix(self):
D = np.zeros((6, 6))
D[0, 0] = D[1, 1] = D[2, 2] = 1 - self.nu
D[0, 1] = D[0, 2] = D[1, 0] = D[1, 2] = D[2, 0] = D[2, 1] = self.nu
D[3, 3] = D[4, 4] = D[5, 5] = (1 - 2 * self.nu) / 2
D = self.E / (1 + self.nu) / (1 - 2 * self.nu) * D
return D
def _get_shape_function(self, x, y, z):
N = np.zeros((4, 1))
N[0] = (1 - x) * (1 - y) * (1 - z) / 8
N[1] = (1 + x) * (1 - y) * (1 - z) / 8
N[2] = (1 + x) * (1 + y) * (1 - z) / 8
N[3] = (1 - x) * (1 + y) * (1 - z) / 8
return N
def _get_jacobian(self, elem):
x = self.nodes[elem, 0::3]
y = self.nodes[elem, 1::3]
z = self.nodes[elem, 2::3]
J = np.zeros((3, 3))
J[0, :] = (y[1:] - y[0]) / 2
J[1, :] = (x[2] - x[0], y[2] - y[0], z[2] - z[0])
J[2, :] = (y[2] - y[0]) / 2
return J
def _get_B_matrix(self, elem):
J = self._get_jacobian(elem)
B = np.zeros((6, 12))
for i in range(4):
B[0, i * 3:i * 3 + 3] = J[1, :] @ self.edof[i, :]
B[1, i * 3:i * 3 + 3] = J[2, :] @ self.edof[i, :]
B[2, i * 3:i * 3 + 3] = J[0, 0] @ self.edof[i, :]
B[3, i * 3:i * 3 + 3] = J[1, :] @ self.edof[i, :]
B[4, i * 3:i * 3 + 3] = J[0, 1] @ self.edof[i, :]
B[5, i * 3:i * 3 + 3] = J[2, :] @ self.edof[i, :]
B = 1 / np.linalg.det(J) * B
return B
def _get_element_stiffness(self, elem):
D = self._get_elastic_matrix()
B = self._get_B_matrix(elem)
Ke = np.transpose(B) @ D @ B * np.linalg.det(self._get_jacobian(elem))
return Ke
def _assemble_stiffness_matrix(self):
for i in range(self.nelems):
Ke = self._get_element_stiffness(i)
edof = np.repeat(self.edof[np.newaxis, :], 4, axis=0).reshape((16, self.ndof))
edof += np.repeat(self.ndof * self.elems[i, np.newaxis], 4, axis=0)
edof = edof.flatten()
self.K[np.ix_(edof, edof)] += Ke
def _assemble_loads(self):
for i in range(len(self.loads)):
node = self.loads[i][0]
dof = self.loads[i][1]
value = self.loads[i][2]
self.F[node * self.ndof + dof] += value
def solve(self):
self._assemble_stiffness_matrix()
self._assemble_loads()
self.U = spsolve(csr_matrix(self.K), self.F)
```
该代码使用了稀疏矩阵求解器来求解方程组,以提高效率。您可以根据需要进行修改和扩展。
阅读全文