spark删除停用词
时间: 2023-12-13 20:33:55 浏览: 105
Spark删除停用词的过程如下:
1. 读取原始数据集。
2. 对原始数据集进行预处理,包括删除空文本和停用词。
3. 进行物流分类。
具体实现代码如下所示:
```python
# 导入必要的库
from pyspark.ml.feature import StopWordsRemover
# 读取原始数据集
raw_data = spark.read.text("path/to/raw_data")
# 定义停用词列表
stop_words = ["the", "and", "a", "an", "in", "to", "of", "for", "with", "on", "at", "by", "that", "this", "these", "those", "then", "than", "thus", "so", "such", "as", "but", "or", "nor", "not", "from", "into", "over", "under", "out", "up", "down", "off", "all", "any", "both", "each", "few", "more", "most", "other", "some", "such", "no", "nor", "not", "only", "own", "same", "so", "than", "too", "very", "s", "t", "can", "will", "just", "don", "should", "now"]
# 创建停用词移除器
stop_words_remover = StopWordsRemover(inputCol="words", outputCol="filtered_words", stopWords=stop_words)
# 对原始数据集进行预处理
processed_data = raw_data.selectExpr("id", "split(value, ' ') as words")
processed_data = stop_words_remover.transform(processed_data)
# 进行物流分类
# ...
```
阅读全文