if 0 < dropout: layers.append(nn.Dropout(dropout)) layers.append(weight_norm(nn.Linear(dims[-2], dims[-1]), dim=None)) if '' != act: layers.append(getattr(nn, act)())怎么理解
时间: 2023-05-19 13:05:41 浏览: 83
这段代码是一个神经网络的层定义,其中包括一个可选的 dropout 层、一个线性层和一个可选的激活函数层。如果 dropout 参数大于 0,则添加一个 dropout 层。然后添加一个线性层,该层的输入维度为 dims[-2],输出维度为 dims[-1]。最后,如果 act 参数不为空,则添加一个激活函数层,该层的类型由 act 参数指定。
相关问题
class CellTrack_GNN(EedgePath_MPNN): def __init__(self, in_channels: int, hidden_channels: int, in_edge_channels: int, hidden_edge_channels_linear: int, hidden_edge_channels_conv: int, num_layers: int, num_nodes_features: int, dropout: float = 0.0, act: Optional[Callable] = ReLU(inplace=True), norm: Optional[torch.nn.Module] = None, jk: str = 'last', **kwargs): super().__init__(in_channels, hidden_channels, in_edge_channels, hidden_edge_channels_linear, num_layers, dropout, act, norm, jk) assert in_edge_channels == hidden_edge_channels_linear[-1] in_edge_dims = in_edge_channels + num_nodes_features * in_channels + 1 self.convs.append(PDNConv(in_channels, hidden_channels, in_edge_channels, hidden_edge_channels_conv, **kwargs)) self.fcs.append(MLP(in_edge_dims, hidden_edge_channels_linear, dropout_p=dropout)) for _ in range(1, num_layers): self.convs.append( PDNConv(hidden_channels, hidden_channels, in_edge_channels, hidden_edge_channels_conv, **kwargs)) self.fcs.append(MLP(in_edge_dims, hidden_edge_channels_linear, dropout_p=dropout))
这段代码定义了一个名为CellTrack_GNN的类,该类继承自EedgePath_MPNN类。在类的构造函数`__init__`中,有一系列参数用于初始化模型的各个组件。
- `in_channels`、`hidden_channels`、`in_edge_channels`、`hidden_edge_channels_linear`、`hidden_edge_channels_conv`、`num_layers`、`num_nodes_features`、`dropout`、`act`、`norm`和`jk`等是构建图神经网络所需的参数。
- `super().__init__(in_channels, hidden_channels, in_edge_channels, hidden_edge_channels_linear, num_layers, dropout, act, norm, jk)`调用了父类EedgePath_MPNN的构造函数,初始化了一些基本的组件。
- `in_edge_dims = in_edge_channels + num_nodes_features * in_channels + 1`计算了输入边特征的维度。
- `self.convs.append(PDNConv(in_channels, hidden_channels, in_edge_channels, hidden_edge_channels_conv, **kwargs))`将一个PDNConv层对象添加到self.convs列表中,用于对节点特征进行卷积操作。
- `self.fcs.append(MLP(in_edge_dims, hidden_edge_channels_linear, dropout_p=dropout))`将一个MLP层对象添加到self.fcs列表中,用于对输入边特征进行全连接操作。
- 然后使用循环,根据num_layers的值,依次添加PDNConv和MLP层对象到self.convs和self.fcs列表中,构建图神经网络的层数。
通过这些组件的初始化,CellTrack_GNN类可以进行图神经网络的前向传播操作。
A ResNet class that is similar to torchvision's but contains the following changes: - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 - The final pooling layer is a QKV attention instead of an average pool """
Here is an implementation of a ResNet class that meets the requirements you specified:
```
import torch
import torch.nn as nn
import torch.nn.functional as F
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000):
super(ResNet, self).__init__()
self.inplanes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.avgpool = nn.AvgPool2d(kernel_size=3, stride=1, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.qkv_pool = nn.MultiheadAttention(embed_dim=512, num_heads=8, dropout=0.1)
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.AvgPool2d(kernel_size=stride, stride=stride),
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = F.relu(x)
x = self.avgpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = x.view(x.size(0), -1)
x = self.qkv_pool(x, x, x)[0]
x = self.fc(x)
return x
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
```
This implementation defines a ResNet class that takes a block type (`BasicBlock` or `Bottleneck`) and a list of layer sizes as input. The `block` argument determines the type of residual block used in the network (either the basic version with two convolutions, or the bottleneck version with three convolutions). The `layers` argument is a list of four integers that specify the number of blocks in each of the four layers of the network.
The implementation includes the following changes from the standard torchvision ResNet:
- There are now 3 "stem" convolutions instead of 1, with an average pool instead of a max pool.
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1.
- The final pooling layer is a QKV attention instead of an average pool.
阅读全文