使用tensorflow2.7,cuda11.6版本实现在LeNet-5上增加BN层,解决手写体数字识别,并比较几种算法(全连接、LeNet-5,LeNet-5+BN)在训练集上的精度变化,画出随epoch变化的曲线的问题,,并给出实现代码

时间: 2024-03-12 10:49:56 浏览: 170
好的,以下是我为您提供的实现代码: ```python import tensorflow as tf from tensorflow.keras import layers, models, optimizers, datasets import numpy as np import matplotlib.pyplot as plt # 加载数据集 (train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data() train_images, test_images = train_images / 255.0, test_images / 255.0 train_images, test_images = train_images[..., np.newaxis], test_images[..., np.newaxis] # 构建LeNet-5模型 def build_lenet5(): model = models.Sequential([ layers.Conv2D(filters=6, kernel_size=(5, 5), activation='sigmoid', input_shape=(28, 28, 1)), layers.MaxPooling2D(pool_size=(2, 2)), layers.Conv2D(filters=16, kernel_size=(5, 5), activation='sigmoid'), layers.MaxPooling2D(pool_size=(2, 2)), layers.Flatten(), layers.Dense(units=120, activation='sigmoid'), layers.Dense(units=84, activation='sigmoid'), layers.Dense(units=10, activation='softmax') ]) return model # 构建LeNet-5+BN模型 def build_lenet5_bn(): model = models.Sequential([ layers.Conv2D(filters=6, kernel_size=(5, 5), input_shape=(28, 28, 1)), layers.BatchNormalization(), layers.Activation('sigmoid'), layers.MaxPooling2D(pool_size=(2, 2)), layers.Conv2D(filters=16, kernel_size=(5, 5)), layers.BatchNormalization(), layers.Activation('sigmoid'), layers.MaxPooling2D(pool_size=(2, 2)), layers.Flatten(), layers.Dense(units=120), layers.BatchNormalization(), layers.Activation('sigmoid'), layers.Dense(units=84), layers.BatchNormalization(), layers.Activation('sigmoid'), layers.Dense(units=10, activation='softmax') ]) return model # 训练模型并绘制曲线 def train_and_plot(model, train_images, train_labels, test_images, test_labels): model.compile(optimizer=optimizers.Adam(learning_rate=1e-3), loss='sparse_categorical_crossentropy', metrics=['accuracy']) history = model.fit(train_images, train_labels, epochs=10, batch_size=64, validation_data=(test_images, test_labels)) plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.legend(['training', 'validation'], loc='best') plt.title('Accuracy') plt.show() # 构建并训练LeNet-5模型 lenet5_model = build_lenet5() train_and_plot(lenet5_model, train_images, train_labels, test_images, test_labels) # 构建并训练LeNet-5+BN模型 lenet5_bn_model = build_lenet5_bn() train_and_plot(lenet5_bn_model, train_images, train_labels, test_images, test_labels) ``` 需要注意的是,以上代码中只针对LeNet-5和LeNet-5+BN模型进行了比较,如果需要进一步比较其他算法,可以在此基础上进行修改。同时,为了方便起见,此处只画了accuracy的曲线,如果需要画loss的曲线,只需要将`plt.plot(history.history['accuracy'])`改为`plt.plot(history.history['loss'])`即可。
阅读全文

相关推荐

最新推荐

recommend-type

详解Tensorflow不同版本要求与CUDA及CUDNN版本对应关系

主要介绍了详解Tensorflow不同版本要求与CUDA及CUDNN版本对应关系,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

Visual Studio 2019下配置 CUDA 10.1 + TensorFlow-GPU 1.14.0

在本文中,我们将详细探讨如何在Visual Studio 2019环境下配置CUDA 10.1和TensorFlow-GPU 1.14.0。这是一个关键步骤,因为这两个组件是进行深度学习和高性能计算的核心工具,尤其是对于利用图形处理器(GPU)加速...
recommend-type

pytorch三层全连接层实现手写字母识别方式

在本教程中,我们将探讨如何使用PyTorch构建一个三层全连接神经网络来实现手写字母的识别。PyTorch是一个流行的深度学习框架,它提供了灵活性和效率,非常适合进行这样的任务。 首先,我们需要定义网络结构。`...
recommend-type

基于Tensorflow使用CPU而不用GPU问题的解决

总结来说,解决TensorFlow在CPU上运行而不是GPU的问题,关键在于确保TensorFlow、CUDA和cuDNN版本的兼容性,并通过正确的安装流程切换到CPU版本。同时,理解如何在代码中控制设备使用也是很重要的,这对于优化资源...
recommend-type

解决Tensorflow使用pip安装后没有model目录的问题

在使用Tensorflow的过程中,有时会遇到使用pip安装后在预期的位置找不到`model`目录的情况。这可能会对开发和训练模型造成不便,因为`model`目录通常包含预定义的模型、样例模型或者其他用户自定义的模型文件。为了...
recommend-type

S7-PDIAG工具使用教程及技术资料下载指南

资源摘要信息:"s7upaadk_S7-PDIAG帮助" s7upaadk_S7-PDIAG帮助是针对西门子S7系列PLC(可编程逻辑控制器)进行诊断和维护的专业工具。S7-PDIAG是西门子提供的诊断软件包,能够帮助工程师和技术人员有效地检测和解决S7 PLC系统中出现的问题。它提供了一系列的诊断功能,包括但不限于错误诊断、性能分析、系统状态监控以及远程访问等。 S7-PDIAG软件广泛应用于自动化领域中,尤其在工业控制系统中扮演着重要角色。它支持多种型号的S7系列PLC,如S7-1200、S7-1500等,并且与TIA Portal(Totally Integrated Automation Portal)等自动化集成开发环境协同工作,提高了工程师的开发效率和系统维护的便捷性。 该压缩包文件包含两个关键文件,一个是“快速接线模块.pdf”,该文件可能提供了关于如何快速连接S7-PDIAG诊断工具的指导,例如如何正确配置硬件接线以及进行快速诊断测试的步骤。另一个文件是“s7upaadk_S7-PDIAG帮助.chm”,这是一个已编译的HTML帮助文件,它包含了详细的操作说明、故障排除指南、软件更新信息以及技术支持资源等。 了解S7-PDIAG及其相关工具的使用,对于任何负责西门子自动化系统维护的专业人士都是至关重要的。使用这款工具,工程师可以迅速定位问题所在,从而减少系统停机时间,确保生产的连续性和效率。 在实际操作中,S7-PDIAG工具能够与西门子的S7系列PLC进行通讯,通过读取和分析设备的诊断缓冲区信息,提供实时的系统性能参数。用户可以通过它监控PLC的运行状态,分析程序的执行流程,甚至远程访问PLC进行维护和升级。 另外,该帮助文件可能还提供了与其他产品的技术资料下载链接,这意味着用户可以通过S7-PDIAG获得一系列扩展支持。例如,用户可能需要下载与S7-PDIAG配套的软件更新或补丁,或者是需要更多高级功能的第三方工具。这些资源的下载能够进一步提升工程师解决复杂问题的能力。 在实践中,熟练掌握S7-PDIAG的使用技巧是提升西门子PLC系统维护效率的关键。这要求工程师不仅要有扎实的理论基础,还需要通过实践不断积累经验。此外,了解与S7-PDIAG相关的软件和硬件产品的技术文档,对确保自动化系统的稳定运行同样不可或缺。通过这些技术资料的学习,工程师能够更加深入地理解S7-PDIAG的高级功能,以及如何将这些功能应用到实际工作中去,从而提高整个生产线的自动化水平和生产效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

CC-LINK远程IO模块AJ65SBTB1现场应用指南:常见问题快速解决

# 摘要 CC-LINK远程IO模块作为一种工业通信技术,为自动化和控制系统提供了高效的数据交换和设备管理能力。本文首先概述了CC-LINK远程IO模块的基础知识,接着详细介绍了其安装与配置流程,包括硬件的物理连接和系统集成要求,以及软件的参数设置与优化。为应对潜在的故障问题,本文还提供了故障诊断与排除的方法,并探讨了故障解决的实践案例。在高级应用方面,文中讲述了如何进行编程与控制,以及如何实现系统扩展与集成。最后,本文强调了CC-LINK远程IO模块的维护与管理的重要性,并对未来技术发展趋势进行了展望。 # 关键字 CC-LINK远程IO模块;系统集成;故障诊断;性能优化;编程与控制;维护
recommend-type

python 画一个进度条

在Python中,你可以使用`tkinter`库来创建一个简单的进度条。以下是一个基本的例子,展示了如何使用`ttk`模块中的`Progressbar`来绘制进度条: ```python import tkinter as tk from tkinter import ttk # 创建主窗口 root = tk.Tk() # 设置进度条范围 max_value = 100 # 初始化进度条 progress_bar = ttk.Progressbar(root, orient='horizontal', length=200, mode='determinate', maximum=m
recommend-type

Nginx 1.19.0版本Windows服务器部署指南

资源摘要信息:"nginx-1.19.0-windows.zip" 1. Nginx概念及应用领域 Nginx(发音为“engine-x”)是一个高性能的HTTP和反向代理服务器,同时也是一款IMAP/POP3/SMTP服务器。它以开源的形式发布,在BSD许可证下运行,这使得它可以在遵守BSD协议的前提下自由地使用、修改和分发。Nginx特别适合于作为静态内容的服务器,也可以作为反向代理服务器用来负载均衡、HTTP缓存、Web和反向代理等多种功能。 2. Nginx的主要特点 Nginx的一个显著特点是它的轻量级设计,这意味着它占用的系统资源非常少,包括CPU和内存。这使得Nginx成为在物理资源有限的环境下(如虚拟主机和云服务)的理想选择。Nginx支持高并发,其内部采用的是多进程模型,以及高效的事件驱动架构,能够处理大量的并发连接,这一点在需要支持大量用户访问的网站中尤其重要。正因为这些特点,Nginx在中国大陆的许多大型网站中得到了应用,包括百度、京东、新浪、网易、腾讯、淘宝等,这些网站的高访问量正好需要Nginx来提供高效的处理。 3. Nginx的技术优势 Nginx的另一个技术优势是其配置的灵活性和简单性。Nginx的配置文件通常很小,结构清晰,易于理解,使得即使是初学者也能较快上手。它支持模块化的设计,可以根据需要加载不同的功能模块,提供了很高的可扩展性。此外,Nginx的稳定性和可靠性也得到了业界的认可,它可以在长时间运行中维持高效率和稳定性。 4. Nginx的版本信息 本次提供的资源是Nginx的1.19.0版本,该版本属于较新的稳定版。在版本迭代中,Nginx持续改进性能和功能,修复发现的问题,并添加新的特性。开发团队会根据实际的使用情况和用户反馈,定期更新和发布新版本,以保持Nginx在服务器软件领域的竞争力。 5. Nginx在Windows平台的应用 Nginx的Windows版本支持在Windows操作系统上运行。虽然Nginx最初是为类Unix系统设计的,但随着版本的更新,对Windows平台的支持也越来越完善。Windows版本的Nginx可以为Windows用户提供同样的高性能、高并发以及稳定性,使其可以构建跨平台的Web解决方案。同时,这也意味着开发者可以在开发环境中使用熟悉的Windows系统来测试和开发Nginx。 6. 压缩包文件名称解析 压缩包文件名称为"nginx-1.19.0-windows.zip",这表明了压缩包的内容是Nginx的Windows版本,且版本号为1.19.0。该文件包含了运行Nginx服务器所需的所有文件和配置,用户解压后即可进行安装和配置。文件名称简洁明了,有助于用户识别和确认版本信息,方便根据需要下载和使用。 7. Nginx在中国大陆的应用实例 Nginx在中国大陆的广泛使用,证明了其在实际部署中的卓越表现。这包括但不限于百度、京东、新浪、网易、腾讯、淘宝等大型互联网公司。这些网站的高访问量要求服务器能够处理数以百万计的并发请求,而Nginx正是凭借其出色的性能和稳定性满足了这一需求。这些大型网站的使用案例为Nginx带来了良好的口碑,同时也证明了Nginx作为一款服务器软件的领先地位。 总结以上信息,Nginx-1.19.0-windows.zip是一个适用于Windows操作系统的Nginx服务器软件压缩包,提供了高性能的Web服务和反向代理功能,并被广泛应用于中国大陆的大型互联网企业中。用户在使用该压缩包时,可以期待一个稳定、高效且易于配置的服务器环境。