使用sklearn实现中文文本分类
时间: 2023-10-20 14:07:40 浏览: 99
中文文本分类是一种基于机器学习的任务,sklearn是一个非常流行的机器学习库,可以用来实现中文文本分类。下面是一个使用sklearn实现中文文本分类的简单示例:
1. 准备数据集
首先需要准备一个中文文本分类的数据集,可以使用已有的数据集,如THUCNews、新闻分类数据集等。
2. 数据预处理
对于中文文本,需要进行分词、去停用词等预处理工作。可以使用jieba分词库和中文停用词库来进行预处理,代码如下:
```python
import jieba
import codecs
import os
# 加载停用词表
def load_stopwords(stopwords_path):
stopwords = []
with codecs.open(stopwords_path, 'r', encoding='utf-8') as f:
for line in f:
stopwords.append(line.strip())
return stopwords
# 对文本进行分词和去停用词
def cut_words(text_path, stopwords_path):
stopwords = load_stopwords(stopwords_path)
cut_text = []
with codecs.open(text_path, 'r', encoding='utf-8') as f:
for line in f:
words = jieba.cut(line.strip())
words = [word for word in words if word not in stopwords]
cut_text.append(' '.join(words))
return cut_text
```
3. 特征提取
对于文本分类任务,需要将文本转换成向量表示。可以使用TF-IDF等方法进行特征提取,代码如下:
```python
from sklearn.feature_extraction.text import TfidfVectorizer
# 对文本进行TF-IDF特征提取
def tfidf_transformer(cut_text):
tfidf_vectorizer = TfidfVectorizer()
tfidf_matrix = tfidf_vectorizer.fit_transform(cut_text)
return tfidf_matrix.toarray()
```
4. 模型训练和预测
使用sklearn的分类模型进行训练和预测,例如朴素贝叶斯分类器。代码如下:
```python
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score
# 训练朴素贝叶斯分类器
def train(X_train, y_train):
clf = MultinomialNB()
clf.fit(X_train, y_train)
return clf
# 预测
def predict(clf, X_test):
y_pred = clf.predict(X_test)
return y_pred
# 计算准确率
def evaluate(y_true, y_pred):
acc = accuracy_score(y_true, y_pred)
return acc
```
完整的代码如下:
```python
import jieba
import codecs
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score
# 加载停用词表
def load_stopwords(stopwords_path):
stopwords = []
with codecs.open(stopwords_path, 'r', encoding='utf-8') as f:
for line in f:
stopwords.append(line.strip())
return stopwords
# 对文本进行分词和去停用词
def cut_words(text_path, stopwords_path):
stopwords = load_stopwords(stopwords_path)
cut_text = []
with codecs.open(text_path, 'r', encoding='utf-8') as f:
for line in f:
words = jieba.cut(line.strip())
words = [word for word in words if word not in stopwords]
cut_text.append(' '.join(words))
return cut_text
# 对文本进行TF-IDF特征提取
def tfidf_transformer(cut_text):
tfidf_vectorizer = TfidfVectorizer()
tfidf_matrix = tfidf_vectorizer.fit_transform(cut_text)
return tfidf_matrix.toarray()
# 训练朴素贝叶斯分类器
def train(X_train, y_train):
clf = MultinomialNB()
clf.fit(X_train, y_train)
return clf
# 预测
def predict(clf, X_test):
y_pred = clf.predict(X_test)
return y_pred
# 计算准确率
def evaluate(y_true, y_pred):
acc = accuracy_score(y_true, y_pred)
return acc
if __name__ == '__main__':
# 准备数据集
data_dir = './data'
train_text_path = os.path.join(data_dir, 'train.txt')
test_text_path = os.path.join(data_dir, 'test.txt')
stopwords_path = os.path.join(data_dir, 'stopwords.txt')
# 数据预处理
X_train_cut = cut_words(train_text_path, stopwords_path)
X_test_cut = cut_words(test_text_path, stopwords_path)
# 特征提取
X_train = tfidf_transformer(X_train_cut)
X_test = tfidf_transformer(X_test_cut)
# 训练模型
y_train = [int(line.split('\t')[0]) for line in codecs.open(train_text_path, 'r', encoding='utf-8')]
clf = train(X_train, y_train)
# 预测和评估
y_true = [int(line.split('\t')[0]) for line in codecs.open(test_text_path, 'r', encoding='utf-8')]
y_pred = predict(clf, X_test)
acc = evaluate(y_true, y_pred)
print('accuracy: {:.2f}%'.format(acc * 100))
```
需要注意的是,上述示例中仅使用了朴素贝叶斯分类器进行分类,实际上可以使用其他的分类器,例如支持向量机、决策树等。同时也可以使用深度学习方法进行中文文本分类,例如使用卷积神经网络、循环神经网络等。
阅读全文