def crop_pointcloud(data_crop, x_o, y_o, x_i, y_i, R_o, R_i, z_critical): K_o = R_o ** 2 / range_z K_i = R_i ** 2 / range_z for z in range(range_z): r_o = np.sqrt(z * K_o) data_layer = data_crop[:, :, z] d_o = np.sqrt(x_o ** 2 + y_o ** 2) d_i = np.sqrt(x_i ** 2 + y_i ** 2) if z < z_critical: r_i = 0 else: r_i = np.sqrt(z * K_i) data_crop[:, :, z] = np.where((d_o > r_o) | (d_i <= r_i), 0, data_layer) return data_crop data_crop = data[:, :, :400] range_x, range_y, range_z = data_crop.shape dx = 550 dy = 530 x, y = np.meshgrid(np.arange(range_x), np.arange(range_y)) x_o = x - range_x / 2 y_o = y - range_y / 2 x_i = x - dx y_i = y - dy z_critical = 50 R_o = 550 R_i = 200 data_crop = crop_pointcloud(data_crop, x_o, y_o, x_i, y_i, R_o, R_i, z_critical) data_crop = data_crop[:, :, 10:] Eigen::Tensor<uint8_t, 3, Eigen::RowMajor>

时间: 2024-04-03 18:37:15 浏览: 15
这段代码是用来对三维点云数据进行裁剪的,其输入参数包括点云数据(data),裁剪的圆心位置(x_o, y_o)、内部圆半径(R_i)、外部圆半径(R_o)以及关键深度位置(z_critical)。其中,range_x、range_y和range_z分别表示点云数据在x、y、z方向上的尺寸大小,dx和dy是内部圆心相对于外部圆心的偏移量。最终输出裁剪后的点云数据(data_crop)。 这段代码中使用了numpy和Eigen库,分别用于处理多维数组和C++矩阵计算。
相关问题

def crop_pointcloud(data_crop, x_o, y_o, x_i, y_i, R_o, R_i, z_critical): K_o = R_o ** 2 / range_z K_i = R_i ** 2 / range_z for z in range(range_z): r_o = np.sqrt(z * K_o) data_layer = data_crop[:, :, z] d_o = np.sqrt(x_o ** 2 + y_o ** 2) d_i = np.sqrt(x_i ** 2 + y_i ** 2) if z < z_critical: r_i = 0 else: r_i = np.sqrt(z * K_i) data_crop[:, :, z] = np.where((d_o > r_o) | (d_i <= r_i), 0, data_layer) return data_crop data_crop = data[:, :, :400] range_x, range_y, range_z = data_crop.shape dx = 550 dy = 530 x, y = np.meshgrid(np.arange(range_x), np.arange(range_y)) x_o = x - range_x / 2 y_o = y - range_y / 2 x_i = x - dx y_i = y - dy z_critical = 50 R_o = 550 R_i = 200 data_crop = crop_pointcloud(data_crop, x_o, y_o, x_i, y_i, R_o, R_i, z_critical) data_crop = data_crop[:, :, 10:]转c++

这段 Python 代码主要是对点云数据进行裁剪,并返回裁剪后的点云数据。以下是将其转换为 C++ 的代码: ```cpp #include <cmath> #include <vector> #include <algorithm> void crop_pointcloud(std::vector<std::vector<std::vector<float>>>& data_crop, int x_o, int y_o, int x_i, int y_i, int R_o, int R_i, int z_critical) { int range_x = data_crop.size(); int range_y = data_crop[0].size(); int range_z = data_crop[0][0].size(); float K_o = std::pow(R_o, 2) / range_z; float K_i = std::pow(R_i, 2) / range_z; for (int z = 0; z < range_z; ++z) { float r_o = std::sqrt(z * K_o); std::vector<std::vector<float>>& data_layer = data_crop[z]; float d_o = std::sqrt(std::pow(x_o, 2) + std::pow(y_o, 2)); float d_i = std::sqrt(std::pow(x_i, 2) + std::pow(y_i, 2)); float r_i = (z < z_critical) ? 0 : std::sqrt(z * K_i); for (int i = 0; i < range_x; ++i) { for (int j = 0; j < range_y; ++j) { if (d_o > r_o || d_i <= r_i) { data_layer[i][j] = 0; } } } } } int main() { std::vector<std::vector<std::vector<float>>> data_crop; // 假设已经读入了点云数据 int range_x = data_crop.size(); int range_y = data_crop[0].size(); int range_z = data_crop[0][0].size(); int dx = 550; int dy = 530; int x_o, y_o, x_i, y_i; x_o = x_i = range_x / 2; y_o = y_i = range_y / 2; int z_critical = 50; int R_o = 550; int R_i = 200; crop_pointcloud(data_crop, x_o, y_o, x_i, y_i, R_o, R_i, z_critical); // 剩余部分请自行完成 return 0; } ``` 需要注意的是,在 C++ 中使用多维数组需要使用嵌套的 `std::vector`,因此在 C++ 的实现中需要对数组的访问进行适当修改。此外,需要将 `numpy` 的一些函数,比如 `np.arange` 和 `np.where` 等等,转换为 C++ 中的等价函数。

x, y = np.meshgrid(np.arange(range_x), np.arange(range_y)) # np.savetxt('reshape_data.txt', x, delimiter=' ', fmt="%i") x_o = x - range_x / 2 y_o = y - range_y / 2 x_i = x - dx y_i = y - dy z_critical = 50 R_o = 550 R_i = 200 def crop_pointcloud(data_crop, x_o, y_o, x_i, y_i, R_o, R_i, z_critical): K_o = R_o ** 2 / range_z K_i = R_i ** 2 / range_z for z in range(range_z): r_o = np.sqrt(z * K_o) data_layer = data_crop[:, :, z] d_o = np.sqrt(x_o ** 2 + y_o ** 2) d_i = np.sqrt(x_i ** 2 + y_i ** 2) if z < z_critical: r_i = 0 else: r_i = np.sqrt(z * K_i) data_crop[:, :, z] = np.where((d_o > r_o) | (d_i <= r_i), 0, data_layer) return data_crop data_crop = crop_pointcloud(data_crop, x_o, y_o, x_i, y_i, R_o, R_i, z_critical) data_crop = data_crop[:, :, 10:] C++ Eigen::Tensor实现

以下是使用C++ Eigen::Tensor实现上述代码的示例: ```cpp #include <iostream> #include <Eigen/Dense> #include <unsupported/Eigen/CXX11/Tensor> using namespace Eigen; template<typename T> void crop_pointcloud(Tensor<T, 3>& data_crop, const Tensor<T, 2>& x_o, const Tensor<T, 2>& y_o, const Tensor<T, 2>& x_i, const Tensor<T, 2>& y_i, const T& R_o, const T& R_i, const int& z_critical) { const int range_z = data_crop.dimension(2); const T K_o = R_o * R_o / range_z; const T K_i = R_i * R_i / range_z; for (int z = 0; z < range_z; ++z) { const T r_o = std::sqrt(z * K_o); auto data_layer = data_crop.chip(z, 2); const auto d_o = (x_o.square() + y_o.square()).sqrt(); const auto d_i = (x_i.square() + y_i.square()).sqrt(); const T r_i = (z < z_critical) ? T(0) : std::sqrt(z * K_i); data_crop.chip(z, 2) = (d_o > r_o || d_i <= r_i).select(T(0), data_layer); } } int main() { const int range_x = 100; const int range_y = 100; const int range_z = 100; Tensor<float, 3> data_crop(range_x, range_y, range_z); Tensor<int, 2> x(range_x, range_y); Tensor<int, 2> y(range_x, range_y); for (int i = 0; i < range_x; ++i) { for (int j = 0; j < range_y; ++j) { x(i, j) = i; y(i, j) = j; for (int k = 0; k < range_z; ++k) { data_crop(i, j, k) = i + j + k; // 假设这是点云数据 } } } Tensor<float, 2> x_o = x.cast<float>() - range_x / 2; Tensor<float, 2> y_o = y.cast<float>() - range_y / 2; Tensor<float, 2> x_i = x.cast<float>() - 1; // 假设dx和dy都是1 Tensor<float, 2> y_i = y.cast<float>() - 1; const float R_o = 550; const float R_i = 200; const int z_critical = 50; crop_pointcloud(data_crop, x_o, y_o, x_i, y_i, R_o, R_i, z_critical); data_crop = data_crop.slice({ 0, 0, 10 }, { range_x, range_y, range_z - 10 }); std::cout << data_crop << std::endl; // 输出处理后的点云数据 return 0; } ``` 这里使用了C++11的`auto`关键字和`Tensor`类来简化代码,并且使用了`slice`函数来去掉处理后的点云数据的前10层。

相关推荐

最新推荐

recommend-type

QT5开发及实例配套源代码.zip

QT5开发及实例配套[源代码],Qt是诺基亚公司的C++可视化开发平台,本书以Qt 5作为平台,每个章节在简单介绍开发环境的基础上,用一个小实例,介绍Qt 5应用程序开发各个方面,然后系统介绍Qt 5应用程序的开发技术,一般均通过实例介绍和讲解内容。最后通过三个大实例,系统介绍Qt 5综合应用开发。光盘中包含本书教学课件和书中所有实例源代码及其相关文件。通过学习本书,结合实例上机练习,一般能够在比较短的时间内掌握Qt 5应用技术。本书既可作为Qt 5的学习和参考用书,也可作为大学教材或Qt 5培训用书。
recommend-type

grpcio-1.46.3-cp37-cp37m-musllinux_1_1_i686.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

大学生毕业答辨ppt免费模板【不要积分】下载可编辑可用(138).zip

大学生毕业答辨ppt免费模板【不要积分】下载可编辑可用(138).zip
recommend-type

Eclipse的C/C++自动补全插件org.eclipse.cdt.ui-7.3.100.202111091601

Eclipse的C/C++自动补全插件,制作参考:https://blog.csdn.net/kingfox/article/details/104121203?spm=1001.2101.3001.6650.1&utm_medium=distribute.pc_relevant.none-task-blog-2~default~BlogCommendFromBaidu~Rate-1-104121203-blog-117118786.235%5Ev43%5Epc_blog_bottom_relevance_base1&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2~default~BlogCommendFromBaidu~Rate-1-104121203-blog-117118786.235%5Ev43%5Epc_blog_bottom_relevance_base1&utm_relevant_index=2
recommend-type

大学生毕业答辨ppt免费模板【不要积分】下载可编辑可用(137).zip

大学生毕业答辨ppt免费模板【不要积分】下载可编辑可用(137).zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。