写出resnet18的训练过程伪代码
时间: 2023-09-03 08:16:45 浏览: 129
实验伪代码
5星 · 资源好评率100%
好的,以下是resnet18的训练过程伪代码:
```
// 定义超参数
learning_rate = 0.001
num_epochs = 10
batch_size = 64
// 加载数据集
train_loader, test_loader = load_data(batch_size)
// 定义模型
model = ResNet18()
// 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
// 训练模型
for epoch in range(num_epochs):
for images, labels in train_loader:
// 前向传播
outputs = model(images)
loss = criterion(outputs, labels)
// 反向传播和优化参数
optimizer.zero_grad()
loss.backward()
optimizer.step()
// 每个epoch后在测试集上计算准确率
total_correct = 0
total_images = 0
for images, labels in test_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total_images += labels.size(0)
total_correct += (predicted == labels).sum().item()
accuracy = total_correct / total_images
print('Epoch [{}/{}], Loss: {:.4f}, Test Accuracy: {:.2f}%'
.format(epoch+1, num_epochs, loss.item(), accuracy * 100))
```
以上是resnet18的训练过程伪代码,包括加载数据集、定义模型、损失函数和优化器、训练模型等步骤。
阅读全文