isomap 的代码实现
时间: 2023-11-12 15:06:37 浏览: 79
Isomap程序代码
4星 · 用户满意度95%
以下是一个简单的 Python 代码实现 Isomap 算法:
```
import numpy as np
from scipy.spatial.distance import cdist
from sklearn.neighbors import NearestNeighbors
class Isomap:
def __init__(self, n_components=2, n_neighbors=5):
self.n_components = n_components
self.n_neighbors = n_neighbors
def fit_transform(self, X):
dist_matrix = cdist(X, X)
# 计算每个样本的最近邻
knn = NearestNeighbors(n_neighbors=self.n_neighbors+1).fit(X)
distances, indices = knn.kneighbors(X)
# 构建权重矩阵
weights = np.zeros_like(dist_matrix)
for i in range(X.shape[0]):
for j in indices[i]:
weights[i][j] = dist_matrix[i][j]
weights[j][i] = dist_matrix[i][j]
# 计算最短路径距离
for k in range(X.shape[0]):
for i in range(X.shape[0]):
for j in range(X.shape[0]):
if weights[i][j] > weights[i][k] + weights[k][j]:
weights[i][j] = weights[i][k] + weights[k][j]
# 计算内积矩阵
B = np.zeros((X.shape[0], X.shape[0]))
for i in range(X.shape[0]):
for j in range(X.shape[0]):
if i != j:
B[i][j] = -0.5 * (weights[i][j] ** 2 -
(dist_matrix[i][j] ** 2) / self.n_neighbors +
np.sum((dist_matrix[i][indices[i][1:]] ** 2) / self.n_neighbors) +
np.sum((dist_matrix[j][indices[j][1:]] ** 2) / self.n_neighbors))
# 对内积矩阵进行特征值分解
eigvals, eigvecs = np.linalg.eigh(B)
indices = np.argsort(eigvals)[::-1]
eigvals = eigvals[indices][:self.n_components]
eigvecs = eigvecs[:, indices][:, :self.n_components]
# 将特征向量转换为新的低维表示
Y = eigvecs.dot(np.diag(np.sqrt(eigvals)))
return Y
```
使用示例:
```
import matplotlib.pyplot as plt
from sklearn.datasets import make_s_curve
# 生成三维 S 形数据
X, color = make_s_curve(n_samples=1000, random_state=0)
# 使用 Isomap 算法将数据降到二维
isomap = Isomap(n_components=2)
Y = isomap.fit_transform(X)
# 可视化降维结果
plt.scatter(Y[:, 0], Y[:, 1], c=color)
plt.title("Isomap")
plt.show()
```
阅读全文