函数或变量 file_times_new 无法识别。

时间: 2024-02-03 22:03:30 浏览: 37
如果出现了函数或变量无法识别的情况,可能是以下原因导致的: 1. 函数或变量未定义:如果函数或变量未在程序中定义或声明,编译器就无法识别它们。请确认是否在程序中定义或声明了该函数或变量。 2. 函数或变量名拼写错误:如果函数或变量名拼写错误,编译器也无法识别它们。请确认函数或变量名是否拼写正确。 3. 函数或变量作用域错误:如果函数或变量的作用域不正确,编译器也无法识别它们。请确认函数或变量的作用域是否正确。 4. 头文件未包含:如果函数或变量在其他文件中定义或声明,需要包含相应的头文件。请确认是否包含了相应的头文件。 如果以上方法仍然无法解决问题,可以尝试使用调试工具查看程序执行过程中的变量和函数调用情况,以便更好地定位问题。
相关问题

for i=1:size(file_names_new,1) file_times_new(i,1)=str2num(strcat(file_names_new(i).name(length(file_names_new(i).name)-18:length(file_names_new(i).name)-11),file_names_new(i).name(length(file_names_new(i).name)-9:length(file_names_new(i).name)-4))); end file_times_sort_new=sort(file_times_new);% 返回排序后的时间 clear index; clear file_names_ind; clear file_names_sort; for i_file_new=1:size(file_names_new,1)% 根据排序的时间对文件排序 index_new=find(file_times_new==file_times_sort_new(i_file_new)); file_names_ind_new(i_file_new,1)=index_new(1); file_names_sort_new(i_file_new,1)=file_names_new(file_names_ind_new(i_file_new)); end for i_alth=2:size(file_names_sort_new,1) ar_ag=16; snr_th=8; file_name_buff=file_names_sort_new(i_alth).name; tic这段代码的流程是什么样的

这段代码的流程如下: 1. 使用循环遍历文件名列表 file_names_new,对每个文件名进行处理,得到一个时间戳,保存在 file_times_new 数组中。 2. 对 file_times_new 数组进行升序排序,得到排序后的时间戳数组 file_times_sort_new。 3. 使用循环遍历排序后的文件名列表 file_names_sort_new,根据文件名对应的时间戳,重新生成一个新的文件名列表 file_names_ind_new,并且按照时间戳排序后的文件名列表 file_names_sort_new。 4. 使用循环遍历 file_names_sort_new 文件名列表,从第二个文件名开始,依次进行一系列操作。 5. 在第 5 行代码中,将一个常量值 16 赋值给变量 ar_ag。 6. 在第 6 行代码中,将一个常量值 8 赋值给变量 snr_th。 7. 在第 7 行代码中,将当前文件名赋值给变量 file_name_buff。 8. 在第 8 行代码中,使用 tic 函数开始计时。

import librosa filepath = 'D:\\360se6\\bishe\\古筝\\' filename = filepath + 'gz1.wav' y, sr = librosa.load(filename,sr = None ) # Beat tracking example # from __future__ import print_function import librosa import matplotlib.pyplot as plt import librosa.display import numpy as np filepath = 'D:\\360se6\\bishe\\古筝\\' filename = filepath + 'gz1.wav' # 1. Get the file path to the included audio example # Sonify detected beat events tempo, beats = librosa.beat.beat_track(y=y, sr=sr) y_beats = librosa.clicks(frames=beats, sr=sr) # Or generate a signal of the same length as y y_beats = librosa.clicks(frames=beats, sr=sr, length=len(y)) # Or use timing instead of frame indices times = librosa.frames_to_time(beats, sr=sr) y_beat_times = librosa.clicks(times=times, sr=sr) # Or with a click frequency of 880Hz and a 500ms sample y_beat_times880 = librosa.clicks(times=times, sr=sr, click_freq=880, click_duration=0.5) # Display click waveform next to the spectrogram plt.figure() S = librosa.feature.melspectrogram(y=y, sr=sr) ax = plt.subplot(2, 1, 2) librosa.display.specshow(librosa.power_to_db(S, ref=np.max), x_axis='time', y_axis='mel') plt.subplot(2, 1, 1, sharex=ax) librosa.display.waveshow(y_beat_times, sr=sr, label='Beat clicks') plt.legend() plt.xlim(15, 30) plt.tight_layout()

这段代码是一个节拍跟踪的例子,使用Librosa库分析一个音频文件中的节奏并生成节拍信号。代码中使用了`librosa.beat.beat_track`函数来检测节拍,然后使用`librosa.clicks`函数生成节拍信号,最后使用`librosa.frames_to_time`函数将节拍帧转换为时间。 在这段代码中,你可以通过修改变量`y`和`s`来分析不同的音频文件。你还可以尝试调整`librosa.clicks`函数的`click_freq`和`click_duration`参数来生成不同的节拍信号。调用`librosa.display.specshow`函数可以将音频信号的频谱图显示出来,使用`librosa.display.waveshow`函数可以将节拍信号显示出来。 如果你有任何问题或疑问,请随时让我知道。

相关推荐

import netCDF4 as nc import numpy as np from netCDF4 import Dataset import matplotlib.pyplot as plt from matplotlib.cm import get_cmap from matplotlib.colors import from_levels_and_colors import cartopy.crs as crs import cartopy.feature as cfeature from cartopy.feature import NaturalEarthFeature from wrf import to_np, getvar, interplevel, smooth2d, get_cartopy, cartopy_xlim, cartopy_ylim, latlon_coords, vertcross, smooth2d, CoordPair, GeoBounds,interpline import warnings warnings.filterwarnings('ignore') file = 'D:/transfer/wrfout_d01_2016-03-01_00_00_00' dataset = nc.Dataset(file) latitude = dataset.variables['XLAT'][0][:] longitude = dataset.variables['XLONG'][0][:] tp1 = dataset.variables['RAINC'][1][:][:] co = dataset.variables['co'][1][1][:][:] time = dataset.variables['Times'][:] co2 = dataset.variables['co2'][:] #var = ds.variables['co2'] #print(co2[:]) plt.imshow(co2[ :, :, 98, 78], cmap='hot_r', vmax=400, vmin=350, alpha=0.5) plt.colorbar() #plt.scatter(latitude,longitude, c=co, s=3, cmap='Reds', vmax=1, vmin=0) proj = crs.PlateCarree(central_longitude=180) proj_data = crs.PlateCarree()#LambertCylindrical() #plt.contourf(co[:, :, 98, 78], cmap='hot') fig , ax = plt.subplots(1,1,figsize=(8,8),subplot_kw={'projection':proj}) #plt.imshow(longitude, latitude, co) ax.set_title('CO2 concentration') #ax.set_xlabel('Longitude') #ax.set_ylabel('Latitude') ax.add_feature(cfeature.COASTLINE.with_scale('50m'),lw=0.5) ax.add_feature(cfeature.BORDERS) leftlon, rightlon, lowerlat, upperlat = (90, 110, 4, 31) ######## 调节绘图经纬度范围 Region = [leftlon, rightlon, lowerlat, upperlat] ax.set_extent(Region, crs=proj_data) #经纬度范围,坐标参考系转换 plt.show()

帮我详细解释一下这段代码 GTV_indexes = [] GTVs_sum = np.zeros((512,512)) # Find the cuts containning GTV contours minXY = 600 maxXY = -1 for time in times: path = folder+patient+'\\'+str(int(time)) # Find the filenames starting with CT minXY1,maxXY1,GTV_index = findContours(path,isPlot=False) GTV_indexes=np.append(GTV_indexes,GTV_index) if minXY>minXY1: minXY = minXY1 elif maxXY<maxXY1: maxXY = maxXY1 print('minXY={}'.format(minXY),'maxXY={}'.format(maxXY)) GTV_indexes = np.array(GTV_indexes) GTV_indexes = np.unique(GTV_indexes).astype(int) print('Cuts including GTVs: {}'.format(GTV_indexes)) writeToFile(GTV_indexes,folder+patient+'\\GTV_indexs.txt') #将DICOM文件的拍摄时间与呼吸曲线对应 #CT scanning time # 由vxp文件获取开始扫描的时刻 vxpPath = folder+patient+'\\0006863819_20200730_090003.vxp' injectTime = getInjectionTime(vxpPath) print('Initial injection time of CT from vxp file:{}'.format(injectTime)) # 得到GTV cut的扫描时刻 scanTimes = np.ones((len(times),len(cuts))) print('scan time of each phase CT') for i,time in enumerate(times,start=0): for j,cut in enumerate(cuts,start=0): filename = folder+patient+'\\'+str(int(time))+'\\CT.{}'.format(patient)+'.Image {}.dcm'.format(int(cut)) scanTime = getScanTime(filename) scanTimes[i,j] = scanTime scanTimes = scanTimes-scanTimes.min()+injectTime # 画出呼吸曲线,并得到相应的呼吸幅度 amplitudes = getBreathingCurve(vxpPath,scanTimes,isplot=1) writeToFile(scanTimes,folder+patient+'\\scanTimes.txt') writeToFile(amplitudes,folder+patient+'\\amplitudes.txt')

补全代码#include "stdio.h" #include "string.h" #define ACC -2 #define sy_if 0 #define sy_then 1 #define sy_else 2 #define sy_while 3 #define sy_begin 4 ...../宏定义/ char ch='\0'; int count=0; static char spelling[10]={""}; static char line[81]={""}; char pline; static char ntab1[10][10]; struct rwords { char sp[10]; int sy; }; struct rwords reswords[10]={{"if",sy_if}, {"do",sy_do},{"esle",sy_else},{"while",sy_while},{"then",sy_then}, {"begin",sy_begin},{"end",sy_end},{"and",op_and},{"or",op_or} ,{"not",op_not}}; struct aa { int sy1; int pos; }buf[100]; int ssp=0; int tt1=0; int lnum=0; FILE cfile; int nlength=0; struct aa pbuf=buf; // readline()/读入行 { ………… } pline='\0'; pline=line;} // readch()/读入字符 …… } ch=pline; pline++; } /********************************/ find(char spel[])/查找 {...... } identifier()/标识符识别 { ........ } /*********************/ number()/常数识别 {.......} scan()/扫描程序 {while(ch!='~') {switch(ch) {case ' ': break; case 'a': case 'b': ...... case 'z': identifier();break; case '0': case '1': ....... case '9': number();break; case '<':readch();if(ch=='=') ​{buf[count].pos=0;} ​ else{if(ch=='>')buf[count].pos=4; ​ else{buf[count].pos=1;pline--;}} ​ buf[count].sy1=rop; ​ count++;break; case '>':readch();if(ch=='='){buf[count].pos=2;} ​else{buf[count].pos=3;pline--;} ​buf[count].sy1=rop; ​count++;break; case '(': buf[count].sy1=lparent;count++;break; case ')':buf[count].sy1=rparent;count++;break; case '#':buf[count].sy1=jinhao;count++;break; case '+':buf[count].sy1=plus;count++;break; case '':buf[count].sy1=times;count++;break; case ':':readch();if(ch=='=')buf[count].sy1=becomes; ​ count++;break; case '=':buf[count].sy1=rop;buf[count].pos=5;count++;break; case ';':buf[count].sy1=semicolon;count++;break; } readch(); }buf[count].sy1=-1; }/***********************/ disp1()/输出 {.... } disp2() {....../输出 } main() { if((cfile=fopen("PAS.C","r"))==NULL) {printf("file not open\n");exit(0);} readch(); scan(); disp1(); disp2();

最新推荐

recommend-type

understanding linux network internals

Functions and Variables Featured in This Chapter 本章所涉及的到的函数与变量 Section 4.9. Files and Directories Featured in This Chapter 本章所涉及的到的(代码)文件 Chapter 5. Network Device ...
recommend-type

NexusSetup.exe是Nexus设备设置程序的执行文件

这款Windows Dock栏工具解决了窗口遮挡问题,支持将窗口最小化至Dock栏,相比mydock稳定性更好,而相比bitdock体积更小,是一款适中的优秀选择,值得推荐。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

某航天所智能制造实施方案(交付版).pptx

某航天所智能制造实施方案(交付版).pptx
recommend-type

opencv运动目标检测与跟踪源代码运动目标的检测与跟踪 ,有详细源代码。.rar

opencv运动目标检测与跟踪源代码运动目标的检测与跟踪 ,有详细源代码。
recommend-type

AI视觉智慧城管解决方案.pptx

AI视觉智慧城管解决方案.pptx
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。