titanic_model = pd.get_dummies(titanic_model, columns=['sex', 'who'])
时间: 2024-01-27 18:03:09 浏览: 64
这段代码是将 Titanic 数据集中的 'sex' 和 'who' 列进行独热编码。独热编码是一种将离散型特征转换成数值型特征的方法,它将每个可能的取值转换成一个新的二进制特征,该特征只有在该取值出现时才为1,否则为0。这种编码方式可以避免算法中的权重偏差问题,并且可以有效地提高算法的准确性。在这个例子中,独热编码将 'sex' 和 'who' 列中的不同取值转换为新的二进制特征,并将它们添加到数据集中。
相关问题
titanic_model = pd.get_dummies(titanic_model, columns=['pclass'])
这行代码是用来对 Titanic 数据集中的 'pclass' 变量进行独热编码的。独热编码是将离散型变量转换为机器学习模型可以理解的数值型变量的一种方式。在这里,'pclass' 变量是船票等级,有三个等级,分别为1、2、3。使用独热编码可以将其转换为三个二元变量:'pclass_1'、'pclass_2' 和 'pclass_3',取值为 0 或 1,表示某个乘客的船票等级是否为 1、2 或 3。这样,模型就可以将船票等级作为数值型变量来处理,并更好地利用该变量对预测结果进行建模。
# 导入相关库 import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score,roc_auc_score,roc_curve # 读取数据 df = pd.read_csv('C:/Users/E15/Desktop/机器学习作业/第一次作业/第一次作业/三个数据集/Titanic泰坦尼克号.csv') # 数据预处理 df = df.drop(["Name", "Ticket", "Cabin"], axis=1) # 删除无用特征 df = pd.get_dummies(df, columns=["Sex", "Embarked"]) # 将分类特征转换成独热编码 df = df.fillna(df.mean()) # 使用平均值填充缺失值 # 划分数据集 X = df.drop(["Survived"], axis=1) y = df["Survived"] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 决策树 dtc = DecisionTreeClassifier(random_state=42) dtc.fit(X_train, y_train) y_pred_dtc = dtc.predict(X_test) # 剪枝决策树 pruned_dtc = DecisionTreeClassifier(random_state=42, ccp_alpha=0.015) pruned_dtc.fit(X_train, y_train) y_pred_pruned_dtc = pruned_dtc.predict(X_test) # 随机森林 rfc = RandomForestClassifier(n_estimators=100, random_state=42) rfc.fit(X_train, y_train) y_pred_rfc = rfc.predict(X_test) # 计算评价指标 metrics = {"Accuracy": accuracy_score, "Precision": precision_score, "Recall": recall_score, "F1-Score": f1_score, "AUC": roc_auc_score} results = {} for key in metrics.keys(): if key == "AUC": results[key] = {"Decision Tree": roc_auc_score(y_test, y_pred_dtc), "Pruned Decision Tree": roc_auc_score(y_test, y_pred_pruned_dtc), "Random Forest": roc_auc_score(y_test, y_pred_rfc)} else: results[key] = {"Decision Tree": metrics[key](y_test, y_pred_dtc), "Pruned Decision Tree": metrics[key](y_test, y_pred_pruned_dtc), "Random Forest": metrics[key](y_test, y_pred_rfc)} # 打印评价指标的表格 results_df = pd.DataFrame(results) print(results_df)怎么打印auv图
要打印AUC图,可以使用`roc_curve`函数获取ROC曲线的参数,然后使用`matplotlib`库绘制曲线。具体代码如下:
```
# 计算ROC曲线参数
fpr_dtc, tpr_dtc, thresholds_dtc = roc_curve(y_test, y_pred_dtc)
fpr_pruned_dtc, tpr_pruned_dtc, thresholds_pruned_dtc = roc_curve(y_test, y_pred_pruned_dtc)
fpr_rfc, tpr_rfc, thresholds_rfc = roc_curve(y_test, y_pred_rfc)
# 绘制ROC曲线
plt.figure(figsize=(8, 6))
plt.plot(fpr_dtc, tpr_dtc, label='Decision Tree')
plt.plot(fpr_pruned_dtc, tpr_pruned_dtc, label='Pruned Decision Tree')
plt.plot(fpr_rfc, tpr_rfc, label='Random Forest')
plt.plot([0, 1], [0, 1], linestyle='--', color='grey')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend()
plt.show()
```
这段代码将会绘制一个ROC曲线,其中每个分类器都使用不同的颜色表示,同时包含一个虚线表示随机分类器的结果。注意,这段代码需要在之前的代码块中运行,以确保`fpr`,`tpr`和`y_pred`参数已经存在。
阅读全文