在UTKface数据集上训练inception v2网络代码
时间: 2024-02-15 17:02:31 浏览: 82
以下是在UTKface数据集上训练inception v2网络的Python代码示例:
```
import tensorflow as tf
from tensorflow.keras.applications.inception_v2 import InceptionV2
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# Set up data generators
train_datagen = ImageDataGenerator(rescale=1./255, validation_split=0.2)
train_generator = train_datagen.flow_from_directory(
'/path/to/UTKface/dataset',
target_size=(224, 224),
batch_size=32,
class_mode='categorical',
subset='training'
)
validation_generator = train_datagen.flow_from_directory(
'/path/to/UTKface/dataset',
target_size=(224, 224),
batch_size=32,
class_mode='categorical',
subset='validation'
)
# Set up InceptionV2 model
base_model = InceptionV2(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
x = base_model.output
x = tf.keras.layers.GlobalAveragePooling2D()(x)
x = tf.keras.layers.Dense(1024, activation='relu')(x)
predictions = tf.keras.layers.Dense(7, activation='softmax')(x)
model = tf.keras.models.Model(inputs=base_model.input, outputs=predictions)
# Compile the model
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# Train the model
model.fit(
train_generator,
epochs=10,
validation_data=validation_generator
)
```
请注意,上述示例代码中的路径和参数需要根据您的数据集和需求进行修改。
阅读全文