class SelfAttention(nn.Module): def __init__(self,in_c,out_c,fm_sz,pos_bias = False): super(SelfAttention,self).__init__() self.w_q = nn.Conv2d(in_channels = in_c,out_channels = out_c,kernel_size = 1) self.w_k = nn.Conv2d(in_channels = in_c,out_channels = out_c,kernel_size = 1) self.w_v = nn.Conv2d(in_channels = in_c,out_channels = out_c,kernel_size = 1) self.pos_code = self.__getPosCode(fm_sz,out_c) self.softmax = nn.Softmax(dim = 2) self.pos_bias = pos_bias 改写为twensorflow形式
时间: 2024-03-12 10:48:24 浏览: 81
可以将这段PyTorch代码改写为如下的TensorFlow代码:
```python
import tensorflow as tf
from tensorflow import keras
class SelfAttention(keras.layers.Layer):
def __init__(self, in_c, out_c, fm_sz, pos_bias=False):
super(SelfAttention, self).__init__()
self.w_q = keras.layers.Conv2D(filters=out_c, kernel_size=1, input_shape=(None, None, in_c))
self.w_k = keras.layers.Conv2D(filters=out_c, kernel_size=1, input_shape=(None, None, in_c))
self.w_v = keras.layers.Conv2D(filters=out_c, kernel_size=1, input_shape=(None, None, in_c))
self.pos_code = self.__getPosCode(fm_sz, out_c)
self.softmax = keras.layers.Softmax(axis=2)
self.pos_bias = pos_bias
def __getPosCode(self, fm_sz, out_c):
x = []
for i in range(fm_sz):
x.append([np.sin, np.cos][i % 2](1 / (10000 ** (i // 2 / fm_sz))))
x = tf.convert_to_tensor([x], dtype=tf.float32)
return tf.concat([(x + tf.transpose(x)).unsqueeze(0) for i in range(out_c)], axis=0)
def call(self, x):
q, k, v = self.w_q(x), self.w_k(x), self.w_v(x)
pos_code = tf.concat([self.pos_code.unsqueeze(0) for i in range(x.shape[0])], axis=0)
if self.pos_bias:
att_map = tf.matmul(q, tf.transpose(k, perm=[0, 1, 3, 2])) + pos_code
else:
att_map = tf.matmul(q, tf.transpose(k, perm=[0, 1, 3, 2])) + tf.matmul(q, tf.transpose(pos_code, perm=[0, 1, 3, 2]))
am_shape = att_map.shape
att_map = self.softmax(tf.reshape(att_map, [am_shape[0], am_shape[1], am_shape[2] * am_shape[3]]))
att_map = tf.reshape(att_map, am_shape)
return att_map * v
```
需要注意的是,这里的代码只是一种可能的TensorFlow实现方式,具体还需要根据实际情况进行微调。
阅读全文